| [1] |
Wang YQ, Wang AJ, Zhang TT, et al. Association of alpha-fetoprotein and metastasis for small hepatocellular carcinoma: a propensity-matched analysis[J]. Sci Rep, 2022, 12(1): 15676. DOI: 10.1038/s41598-022-19531-8.
|
| [2] |
Li YL, Hung WC. Reprogramming of sentinel lymph node microenvironment during tumor metastasis[J]. J Biomed Sci, 2022, 29(1): 84. DOI: 10.1186/s12929-022-00868-1.
|
| [3] |
Ueshima S, Fang J. Histone H3K9 methyltransferase SETDB1 augments invadopodia formation to promote tumor metastasis[J]. Oncogene, 2022, 41(24): 3370-3380. DOI: 10.1038/s41388-022-02345-3.
pmid: 35546351
|
| [4] |
Manuelli V, Cahill F, Wylie H, et al. Invadopodia play a role in prostate cancer progression[J]. BMC Cancer, 2022, 22(1): 386. DOI: 10.1186/s12885-022-09424-4.
|
| [5] |
Perrin L, Gligorijevic B. Proteolytic and mechanical remodeling of the extracellular matrix by invadopodia in cancer[J]. Phys Biol, 2022, 20(1): 015001. DOI: 10.1088/1478-3975/aca0d8.
|
| [6] |
Niland S, Riscanevo AX, Eble JA. Matrix metalloproteinases shape the tumor microenvironment in cancer progression[J]. Int J Mol Sci, 2021, 23(1): 146. DOI: 10.3390/ijms23010146.
|
| [7] |
Djediai S, Gonzalez Suarez N, El Cheikh-Hussein L, et al. MT1-MMP cooperates with TGF-β receptor-mediated signaling to trigger SNAIL and induce epithelial-to-mesenchymal-like transition in U87 glioblastoma cells[J]. Int J Mol Sci, 2021, 22(23): 13006. DOI: 10.3390/ijms222313006.
|
| [8] |
Linder S, Cervero P, Eddy R, et al. Mechanisms and roles of podosomes and invadopodia[J]. Nat Rev Mol Cell Biol, 2023, 24(2): 86-106. DOI: 10.1038/s41580-022-00530-6.
|
| [9] |
Loureiro FJA, Balbinot KM, da Silva Kataoka MS, et al. Invadopodia related-proteins expression in mucoepidermoid carcinoma[J]. Oral Dis, 2025, 31(8): 2427-2440. DOI: 10.1111/odi.15312.
|
| [10] |
Mishra YG, Manavathi B. Focal adhesion dynamics in cellular function and disease[J]. Cell Signal, 2021, 85: 110046. DOI: 10.1016/j.cellsig.2021.110046.
|
| [11] |
Xia XD, Alabi A, Wang M, et al. Membrane-type Ⅰ matrix metalloproteinase (MT1-MMP), lipid metabolism, and therapeutic implications[J]. J Mol Cell Biol, 2021, 13(7): 513-526. DOI: 10.1093/jmcb/mjab048.
|
| [12] |
Gil-Henn H, Girault JA, Lev S. PYK2, a hub of signaling networks in breast cancer progression[J]. Trends Cell Biol, 2024, 34(4): 312-326. DOI: 10.1016/j.tcb.2023.07.006.
|
| [13] |
Legrand M, Mousson A, Carl P, et al. Protein dynamics at invadopodia control invasion-migration transitions in melanoma cells[J]. Cell Death Dis, 2023, 14(3): 190. DOI: 10.1038/s41419-023-05704-4.
|
| [14] |
Quilaqueo-Millaqueo N, Brown-Brown DA, Vidal-Vidal JA, et al. NOX proteins and ROS generation: role in invadopodia formation and cancer cell invasion[J]. Biol Res, 2024, 57(1): 98. DOI: 10.1186/s40659-024-00577-z.
|
| [15] |
Mgrditchian T, Sakalauskaite G, Müller T, et al. The multiple roles of actin-binding proteins at invadopodia[J]. Int Rev Cell Mol Biol, 2021, 360: 99-132. DOI: 10.1016/bs.ircmb.2021.03.004.
pmid: 33962752
|
| [16] |
Jiang Y, Zhang H, Wang J, et al. Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy[J]. J Hematol Oncol, 2022, 15(1): 34. DOI: 10.1186/s13045-022-01252-0.
|
| [17] |
Kumar R, Tiwari V, Dey S. Role of proline-rich tyrosine kinase 2 (Pyk2) in the pathogenesis of Alzheimer's disease[J]. Eur J Neurosci, 2022, 56(9): 5442-5452. DOI: 10.1111/ejn.15569.
|
| [18] |
Patwardhan S, Mahadik P, Shetty O, et al. ECM stiffness-tuned exosomes drive breast cancer motility through thrombospondin-1[J]. Biomaterials, 2021, 279: 121185. DOI: 10.1016/j.biomaterials.2021.121185.
|
| [19] |
Prakash J, Shaked Y. The interplay between extracellular matrix remodeling and cancer therapeutics[J]. Cancer Discov, 2024, 14(8): 1375-1388. DOI: 10.1158/2159-8290.Cd-24-0002.
pmid: 39091205
|
| [20] |
Dalton CJ, Lemmon CA. Fibronectin: molecular structure, fibrillar structure and mechanochemical signaling[J]. Cells, 2021, 10(9): 2443. DOI: 10.3390/cells10092443.
|
| [21] |
Sorvina A, Antoniou M, Esmaeili Z, et al. Unusual suspects: bone and cartilage ECM proteins as carcinoma facilitators[J]. Cancers (Basel), 2023, 15(3): 791. DOI: 10.3390/cancers15030791.
|
| [22] |
Ding XC, Wang LL, Zhang XD, et al. The relationship between expression of PD-L1 and HIF-1 αin glioma cells under hypoxia[J]. J Hematol Oncol, 2021, 14(1): 92. DOI: 10.1186/s13045-021-01102-5.
|
| [23] |
Wang JZ, Zhu W, Han J, et al. The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer[J]. Cancer Commun (Lond), 2021, 41(7): 560-575. DOI: 10.1002/cac2.12158.
|
| [24] |
Rimal R, Desai P, Daware R, et al. Cancer-associated fibroblasts: origin, function, imaging, and therapeutic targeting[J]. Adv Drug Deliv Rev, 2022, 189: 114504. DOI: 10.1016/j.addr.2022.114504.
|
| [25] |
Li M, Yang Y, Xiong L, et al. Metabolism, metabolites, and macrophages in cancer[J]. J Hematol Oncol, 2023, 16(1): 80. DOI: 10.1186/s13045-023-01478-6.
|
| [26] |
Wang Y, Wang W, Wu H, et al. The essential role of PRAK in tumor metastasis and its therapeutic potential[J]. Nat Commun, 2021, 12(1): 1736. DOI: 10.1038/s41467-021-21993-9.
|
| [27] |
Shen J, Huang Q, Jia W, et al. YAP1 induces invadopodia formation by transcriptionally activating TIAM1 through enhancer in breast cancer[J]. Oncogene, 2022, 41(31): 3830-3845. DOI: 10.1038/s41388-022-02344-4.
pmid: 35773411
|
| [28] |
孟珂心, 陆海军. 口腔菌群:口腔鳞状细胞癌诊断和预后的生物标志物[J]. 国际肿瘤学杂志, 2024, 51(8): 515-519. DOI: 10.3760/cma.j.cn371439-20240304-00086.
|
| [29] |
Mitre GP, Balbinot KM, Ribeiro ALR, et al. Key proteins of invadopodia are overexpressed in oral squamous cell carcinoma suggesting an important role of MT1-MMP in the tumoral progression[J]. Diagn Pathol, 2021, 16(1): 33. DOI: 10.1186/s13000-021-01090-7.
|
| [30] |
Gou Q, Zheng LL, Huang H. Unravelling the roles of autophagy in OSCC: a renewed perspective from mechanisms to potential applications[J]. Front Pharmacol, 2022, 13: 994643. DOI: 10.3389/fphar.2022.994643.
|
| [31] |
杜爱超, 程厚翔, 代军强, 等. 肿瘤电场治疗在胶质母细胞瘤中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(10): 639-644. DOI: 10.3760/cma.j.cn371439-20240407-00107.
|
| [32] |
Whitehead CA, Fang H, Su H, et al. Small extracellular vesicles promote invadopodia activity in glioblastoma cells in a therapy-dependent manner[J]. Cell Oncol (Dordr), 2023, 46(4): 909-931. DOI: 10.1007/s13402-023-00786-w.
pmid: 37014551
|
| [33] |
Whitehead CA, Morokoff AP, Kaye AH, et al. Invadopodia associated thrombospondin-1 contributes to a post-therapy pro-invasive response in glioblastoma cells[J]. Exp Cell Res, 2023, 431(1): 113743. DOI: 10.1016/j.yexcr.2023.113743.
|
| [34] |
Yu Y, Peng XD, Qian XJ, et al. Fis1 phosphorylation by Met promotes mitochondrial fission and hepatocellular carcinoma metastasis[J]. Signal Transduct Target Ther, 2021, 6(1): 401. DOI: 10.1038/s41392-021-00790-2.
|
| [35] |
Hao Z, Zhang M, Du Y, et al. Invadopodia in cancer metastasis: dynamics, regulation, and targeted therapies[J]. J Transl Med, 2025, 23(1): 548. DOI: 10.1186/s12967-025-06526-y.
|
| [36] |
Li F, Yang BB. Non-coding RNAs in invadopodia: new insights into cancer metastasis[J]. Front Oncol, 2021, 11: 681576. DOI: 10.3389/fonc.2021.681576.
|
| [37] |
Chen SH, Chao CN, Chen SY, et al. Flunarizine, a drug approved for treating migraine and vertigo, exhibits cytotoxicity in GBM cells[J]. Eur J Pharmacol, 2021, 892: 173756. DOI: 10.1016/j.ejphar.2020.173756.
|
| [38] |
Kreider-Letterman G, Castillo A, Mahlandt EK, et al. ARHGAP17 regulates the spatiotemporal activity of Cdc42 at invadopodia[J]. J Cell Biol, 2023, 222(2): e202207020. DOI: 10.1083/jcb.202207020.
|