[1] |
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763.
|
[2] |
中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会. 中国食管癌放射治疗指南(2023年版)[J]. 国际肿瘤学杂志, 2024, 51(1): 1-20. DOI: 10.3760/cma.j.cn371439-20231221-00001.
|
[3] |
Cooper JS, Guo MD, Herskovic A, et al. Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation Therapy Oncology Group[J]. JAMA, 1999, 281(17): 1623-1627. DOI: 10.1001/jama.281.17.1623.
|
[4] |
中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会. 中国食管鳞状细胞癌新辅助放射治疗专家共识[J]. 国际肿瘤学杂志, 2023, 50(3): 129-137. DOI: 10.3760/cma.j.cn371439-20230217-00027.
|
[5] |
Li C, Ni W, Wang X, et al. A phase Ⅰ/Ⅱ radiation dose escalation trial using simultaneous integrated boost technique with elective nodal irradiation and concurrent chemotherapy for unresectable esophageal cancer[J]. Radiat Oncol, 2019, 14(1): 48.DOI: 10.1186/s13014-019-1249-5.
|
[6] |
Bradley J, Movsas B. Radiation esophagitis: predictive factors and preventive strategies[J]. Semin Radiat Oncol, 2004, 14(4): 280-286. DOI: 10.1016/j.semradonc.2004.06.003.
pmid: 15558501
|
[7] |
Cox JD, Stetz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC)[J]. Int J Radiat Oncol Biol Phys, 1995, 31(5): 1341-1346. DOI: 10.1016/0360-3016(95)00060-C.
|
[8] |
Glide-Hurst CK, Chetty IJ. Improving radiotherapy planning, delivery accuracy, and normal tissue sparing using cutting edge technologies[J]. J Thorac Dis, 2014, 6(4): 303-318. DOI: 10.3978/j.issn.2072-1439.2013.11.10.
pmid: 24688775
|
[9] |
Everitt S, Duffy M, Bressel M, et al. Association of oesophageal radiation dose volume metrics, neutropenia and acute radiation oesophagitis in patients receiving chemoradiotherapy for non-small cell lung cancer[J]. Radiat Oncol, 2016, 11: 20. DOI: 10.1186/s13014-016-0596-8.
pmid: 26864559
|
[10] |
Hirota S, Tsujino K, Endo M, et al. Dosimetric predictors of radiation esophagitis in patients treated for non-small-cell lung cancer with carboplatin/paclitaxel/radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2001, 51(2): 291-295. DOI: 10.1016/s0360-3016(01)01648-0.
|
[11] |
Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to machine learning, neural networks, and deep learning[J]. Transl Vis Sci Technol, 2020, 9(2): 14. DOI: 10.1167/tvst.9.2.14.
|
[12] |
Greener JG, Kandathil SM, Moffat L, et al. A guide to machine learning for biologists[J]. Nat Rev Mol Cell Biol, 2022, 23(1): 40-55. DOI: 10.1038/s41580-021-00407-0.
|
[13] |
Kang J, Schwartz R, Flickinger J, et al. Machine learning approaches for predicting radiation therapy outcomes: a clinician's perspective[J]. Int J Radiat Oncol Biol Phys, 2015, 93(5): 1127-1135. DOI: 10.1016/j.ijrobp.2015.07.2286.
|
[14] |
Rajula HSR, Verlato G, Manchia M, et al. Comparison of conventional statistical methods with machine learning in medicine: diag-nosis, drug development, and treatment[J]. Medicina (Kaunas), 2020, 56(9): 455. DOI: 10.3390/medicina56090455.
|
[15] |
蓝柳, 莫玉珍, 赵迎喜, 等. 正常组织并发症概率模型预测食管癌患者行同步放化疗时发生中-重度急性放射性食管炎的效能[J]. 广西医学, 2019, 41(23): 2965-2969, 2976. DOI: 10.11675/j.issn.0253-4304.2019.23.05.
|
[16] |
Yu Y, Zheng H, Liu L, et al. Predicting severe radiation esophagitis in patients with locally advanced esophageal squamous cell carcinoma receiving definitive chemoradiotherapy: construction and validation of a model based in the clinical and dosimetric parameters as well as inflammatory indexes[J]. Front Oncol, 2021, 11: 687035. DOI: 10.3389/fonc.2021.687035.
|
[17] |
Yakar M, Etiz D, Metintas M, et al. Prediction of radiation pneumonitis with machine learning in stage Ⅲ lung cancer: a pilot study[J]. Technol Cancer Res Treat, 2021, 20: 15330338211016373. DOI: 10.1177/15330338211016373.
|
[18] |
Prendin F, Pavan J, Cappon G, et al. The importance of interpreting machine learning models for blood glucose prediction in diabetes: an analysis using SHAP[J]. Sci Rep, 2023, 13(1): 16865. DOI: 10.1038/s41598-023-44155-x.
|
[19] |
Liu H, Chen X, Liu X. Factors influencing secondary school students' reading literacy: an analysis based on XGBoost and SHAP methods[J]. Front Psychol, 2022, 13: 948612. DOI: 10.3389/fpsyg.2022.948612.
|
[20] |
Stienstra CMK, Ieritano C, Haack A, et al. Bridging the gap between differential mobility, log S, and log P using machine learning and SHAP analysis[J]. Anal Chem, 2023, 95(27): 10309-10321. DOI: 10.1021/acs.analchem.3c00921.
|
[21] |
Qiu J, Ke D, Lin H, et al. Using inflammatory indexes and clinical parameters to predict radiation esophagitis in patients with small-cell lung cancer undergoing chemoradiotherapy[J]. Front Oncol, 2022, 12: 898653. DOI: 10.3389/fonc.2022.898653.
|
[22] |
Grundy SM. Inflammation, hypertension, and the metabolic syndrome[J]. JAMA, 2003, 290(22): 3000-3002. DOI: 10.1001/jama.290.22.3000.
pmid: 14665663
|
[23] |
Mikolajczyk TP, Szczepaniak P, Vidler F, et al. Role of inflammatory chemokines in hypertension[J]. Pharmacol Ther, 2021, 223: 107799. DOI: 10.1016/j.pharmthera.2020.107799.
|