[1] |
Kumar SK, Rajkumar V, Kyle RA, et al. Multiple myeloma[J]. Nat Rev Dis Primers, 2017, 3: 17046. DOI: 10.1038/nrdp.2017.46.
pmid: 28726797
|
[2] |
王盼盼, 朱登勤, 杨晓煜. 多发性骨髓瘤发病机制及治疗的研究进展[J]. 中国医学创新, 2023, 20(13): 164-168. DOI: 10.3969/j.issn.1674-4985.2023.13.040.
|
[3] |
卢静, 杜鹃. 多发性骨髓瘤靶向新药研究进展[J]. 药学进展, 2022, 46(6): 435-446.
|
[4] |
Solimando AG, Krebs M, Desantis V, et al. Breaking through multiple myeloma: a paradigm for a comprehensive tumor ecosystem targeting[J]. Biomedicines, 2023, 11(7): 2087. DOI: 10.3390/biomedici-nes11072087.
|
[5] |
Liu X, Cao J, Huang G, et al. Biological activities of artemisinin derivatives beyond malaria[J]. Curr Top Med Chem, 2019, 19(3): 205-222. DOI: 10.2174/1568026619666190122144217.
pmid: 30674260
|
[6] |
Wang SJ, Gao Y, Chen H, et al. Dihydroartemisinin inactivates NF-κ B and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo[J]. Cancer Lett, 2010, 293(1): 99-108. DOI: 10.1016/j.canlet.2010.01.001.
|
[7] |
Li Y, Lu J, Chen Q, et al. Artemisinin suppresses hepatocellular carcinoma cell growth, migration and invasion by targeting cellular bioenergetics and Hippo-YAP signaling[J]. Arch Toxicol, 2019, 93(11): 3367-3383. DOI: 10.1007/s00204-019-02579-3.
pmid: 31563988
|
[8] |
沈敬堃, 朱海涛, 梅珈彬, 等. 地高辛和他莫昔芬协同抑制乳腺癌MCF-7细胞的增殖、迁移和侵袭[J]. 中国药理学通报, 2021, 37(9): 1256-1263. DOI: 10.3969/j.issn.1001-1978.2021.09.013.
|
[9] |
Mereu E, Abbo D, Paradzik T, et al. Euchromatic histone lysine methyltransferase 2 inhibition enhances carfilzomib sensitivity and overcomes drug resistance in multiple myeloma cell lines[J]. Cancers (Basel), 2023, 15(8): 2199. DOI: 10.3390/cancers15082199.
|
[10] |
Herndon TM, Deisseroth A, Kaminskas E, et al. Food and Drug Administration approval: carfilzomib for the treatment of multiple myeloma[J]. Clin Cancer Res, 2013, 19(17): 4559-4563. DOI: 10.1158/1078-0432.CCR-13-0755.
pmid: 23775332
|
[11] |
He S, Tian W, Zhao J, Gong R, et al. Carfilzomib inhibits the proliferation and apoptosis of multiple myeloma cells by inhibiting STAT1/COX-2/iNOS signaling pathway[J]. Transl Cancer Res, 2022, 11(1): 206-216. DOI: 10.21037/tcr-21-2534.
pmid: 35261897
|
[12] |
Salem K, Brown CO, Schibler J, et al. Combination chemotherapy increases cytotoxicity of multiple myeloma cells by modification of nuclear factor (NF)-κB activity[J]. Exp Hematol, 2013, 41(2): 209-218. DOI: 10.1016/j.exphem.2012.10.002.
pmid: 23063726
|
[13] |
Qiang YW, Ye S, Huang Y, et al. MAFb protein confers intrinsic resistance to proteasome inhibitors in multiple myeloma[J]. BMC Cancer, 2018, 18(1): 724. DOI: 10.1186/s12885-018-4602-4.
|
[14] |
Gong Y, Gallis BM, Goodlett DR, et al. Effects of transferrin conjugates of artemisinin and artemisinin dimer on breast cancer cell lines[J]. Anticancer Res, 2013, 33(1): 123-132.
pmid: 23267137
|
[15] |
Efferth T. Molecular pharmacology and pharmacogenomics of arte-misinin and its derivatives in cancer cells[J]. Curr Drug Targets, 2006, 7(4): 407-421. DOI: 10.2174/138945006776359412.
pmid: 16611029
|
[16] |
Lucibello M, Adanti S, Antelmi E, et al. Phospho-TCTP as a therapeutic target of dihydroartemisinin for aggressive breast cancer cells[J]. Oncotarget, 2015, 6(7): 5275-5291. DOI: 10.18632/oncotarget.2971.
pmid: 25779659
|
[17] |
Allegra A, Speciale A, Molonia MS, et al. Curcumin ameliorates the in vitro efficacy of carfilzomib in human multiple myeloma U266 cells targeting p53 and NF- κ B pathways[J]. Toxicol In Vitro, 2018, 47: 186-194. DOI: 10.1016/j.tiv.2017.12.001.
|
[18] |
Ma Q, Liao H, Xu L, et al. Autophagy-dependent cell cycle arrest in esophageal cancer cells exposed to dihydroartemisinin[J]. Chin Med, 2020, 15: 37. DOI: 10.1186/s13020-020-00318-w.
|
[19] |
Kiraz Y, Adan A, Kartal Yandim M, et al. Major apoptotic mechanisms and genes involved in apoptosis[J]. Tumour Biol, 2016, 37(7): 8471-8486. DOI: 10.1007/s13277-016-5035-9.
|
[20] |
Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch[J]. Nat Rev Cancer, 2002, 2(9): 647-656. DOI: 10.1038/nrc883.
pmid: 12209154
|
[21] |
Elmore S. Apoptosis: a review of programmed cell death[J]. Toxicol Pathol, 2007, 35(4): 495-516. DOI: 10.1080/01926230701320337.
pmid: 17562483
|
[22] |
陈光华, 魏莹, 舒波. 鱼腥草总黄酮调控PI3K/Akt信号通路诱导人乳腺癌细胞株MCF-7凋亡的实验研究[J]. 中国医院药学杂志, 2020, 40(4): 391-396. DOI: 10.13286/j.1001-5213.2020.04.07.
|
[23] |
Li YN, Ning N, Song L, et al. Derivatives of deoxypodophyllotoxin induce apoptosis through Bcl-2/Bax proteins expression[J]. Anticancer Agents Med Chem, 2021, 21(5): 611-620. DOI: 10.2174/1871520620999200730160952.
|
[24] |
Li S, Wei P, Zhang B, et al. Apoptosis of lung cells regulated by mitochondrial signal pathway in crotonaldehyde-induced lung injury[J]. Environ Toxicol, 2020, 35(11): 1260-1273. DOI: 10.1002/tox.22991.
pmid: 32639093
|
[25] |
Levine AJ. p53: 800 million years of evolution and 40 years of discovery[J]. Nat Rev Cancer, 2020, 20(8): 471-480. DOI: 10.1038/s41568-020-0262-1.
pmid: 32404993
|
[26] |
Wei H, Qu L, Dai S, et al. Structural insight into the molecular mechanism of p53-mediated mitochondrial apoptosis[J]. Nat Commun, 2021, 12(1): 2280. DOI: 10.1038/s41467-021-22655-6.
pmid: 33863900
|
[27] |
崔兴, 孙润洁, 王庆松. 桂枝茯苓胶囊通过线粒体途径对骨髓瘤细胞凋亡的影响[J]. 中华中医药杂志, 2022, 37(3): 1395-1400.
|