[1] |
陈爱民, 骆献阳. 分化型甲状腺癌侵犯喉气管食管临床分析[J]. 临床耳鼻咽喉头颈外科杂志, 2017, (10):802-803. DOI: 10.13201/j.issn.1001-1781.2017.10.016.
doi: 10.13201/j.issn.1001-1781.2017.10.016
|
[2] |
Qu R, Li J, Yang J, et al. Treatment of differentiated thyroid cancer: can endoscopic thyroidectomy via a chest-breast approach achieve similar therapeutic effects as open surgery?[J]. Surg Endosc, 2018,32(12):4749-4756. DOI: 10.1007/s00464-018-6221-1.
doi: 10.1007/s00464-018-6221-1
|
[3] |
De La Fouchardière C, Decaussin-Petrucci M, Berthiller J, et al. Predictive factors of outcome in poorly differentiated thyroid carcinomas[J]. Eur J Cancer, 2018,92:40-47. DOI: 10.1016/j.ejca.2017.12.027.
doi: S0959-8049(18)30005-4
pmid: 29413688
|
[4] |
Xu K, Chen D, Qian D, et al. AZD5153, a novel BRD4 inhibitor, suppresses human thyroid carcinoma cell growth in vitro and in vivo[J]. Biochem Biophys Res Commun, 2018,499(3):531-537. DOI: 10.1016/j.bbrc.2018.03.184.
doi: 10.1016/j.bbrc.2018.03.184
|
[5] |
Smeby J, Sveen A, Merok MA, et al. CMS-dependent prognostic impact of KRAS and BRAFV600E mutations in primary colorectal cancer[J]. Ann Oncol, 2018,29(5):1227-1234. DOI: 10.1093/annonc/mdy085.
doi: S0923-7534(19)34549-1
pmid: 29518181
|
[6] |
Telechea-Fernández M, Rodríguez-Fernández L, García C, et al. New localization and function of calpain-2 in nucleoli of colorectal cancer cells in ribosomal biogenesis: effect of KRAS status[J]. Oncotarget, 2018,9(10):9100-9113. DOI: 10.18632/oncotarget.23888.
doi: 10.18632/oncotarget.23888
pmid: 29507677
|
[7] |
Duman BB, Kara OI, Uğuz A, et al. Evaluation of PTEN, PI3K, MTOR, and KRAS expression and their clinical and prognostic relevance to differentiated thyroid carcinoma[J]. Contemp Oncol (Pozn), 2014,18(4):234-240. DOI: 10.5114/wo.2014.43803.
doi: 10.5114/wo.2014.43803
|
[8] |
Dong X, Hu X, Chen J, et al. BRD4 regulates cellular senescence in gastric cancer cells via E2F/miR-106b/p21 axis[J]. Cell Death Dis, 2018,9(2):203. DOI: 10.1038/s41419-017-0181-6.
doi: 10.1038/s41419-017-0181-6
|
[9] |
Shi DM, Bian XY, Qin CD, et al. miR-106b-5p promotes stem cell-like properties of hepatocellular carcinoma cells by targeting PTEN via PI3K/Akt pathway[J]. Onco Targets Ther, 2018,11:571-585. DOI: 10.2147/ott.S152611.
doi: 10.2147/ott.S152611
|
[10] |
Wei K, Pan C, Yao G, et al. MiR-106b-5p promotes proliferation and inhibits apoptosis by regulating BTG3 in non-small cell lung cancer[J]. Cell Physiol Biochem, 2017,44(4):1545-1558. DOI: 10.1159/000485650.
doi: 10.1159/000485650
pmid: 29197876
|
[11] |
赵善民, 汤球, 刘志学, 等. K-RasG12D基因突变体慢病毒载体的构建及其鉴定[J]. 2014,14(2):223-225, 250. DOI: 10.13241/j.cnki.pmb.2014.02.006.
doi: 10.13241/j.cnki.pmb.2014.02.006
|
[12] |
Schlumberger M, Brose M, Elisei R, et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer[J]. Lancet Diabetes Endocrinol, 2014,2(5):356-358. DOI: 10.1016/s2213-8587(13)70215-8.
doi: 10.1016/s2213-8587(13)70215-8
|
[13] |
Riesco-Eizaguirre G, Galofré JC, Grande E, et al. Spanish consensus for the management of patients with advanced radioactive iodine refractory differentiated thyroid cancer[J]. Endocrinol Nutr, 2016,63(4):e17-e24. DOI: 10.1016/j.endonu.2015.08.007.
doi: 10.1016/j.endonu.2015.08.007
|
[14] |
Hedayati M, Zarif Yeganeh M, Sheikholeslami S, et al. Diversity of mutations in the RET proto-oncogene and its oncogenic mechanism in medullary thyroid cancer[J]. Crit Rev Clin Lab Sci, 2016,53(4):217-227. DOI: 10.3109/10408363.2015.1129529.
doi: 10.3109/10408363.2015.1129529
|
[15] |
Rossi M, Buratto M, Tagliati F, et al. Relevance of BRAF(V600E) mutation testing versus RAS point mutations and RET/PTC rearrangements evaluation in the diagnosis of thyroid cancer[J]. Thyroid, 2015,25(2):221-228. DOI: 10.1089/thy.2014.0338.
doi: 10.1089/thy.2014.0338
|
[16] |
B Byeon HK, Na HJ, Yang YJ, et al. c-Met-mediated reactivation of PI3K/AKT signaling contributes to insensitivity of BRAF(V600E) mutant thyroid cancer to BRAF inhibition[J]. Mol Carcinog, 2016,55(11):1678-1687. DOI: 10.1002/mc.22418.
doi: 10.1002/mc.22418
|
[17] |
Zhu X, Zhao L, Park JW, et al. Synergistic signaling of KRAS and thyroid hormone receptor β mutants promotes undifferentiated thyroid cancer through MYC up-regulation[J]. Neoplasia, 2014,16(9):757-769. DOI: 10.1016/j.neo.2014.08.003.
doi: 10.1016/j.neo.2014.08.003
|
[18] |
Wang ZD, Wei SQ, Wang QY. Targeting oncogenic KRAS in non-small cell lung cancer cells by phenformin inhibits growth and angiogenesis[J]. Am J Cancer Res, 2015,5(11):3339-3349.
|
[19] |
Wong CC, Qian Y, Li X, et al. SLC25A22 Promotes proliferation and survival of colorectal cancer cells with KRAS mutations and xenograft tumor progression in mice via intracellular synjournal of aspartate[J]. Gastroenterology, 2016,151(5): 945-960.e6. DOI: 10.1053/j.gastro.2016.07.011.
doi: 10.1053/j.gastro.2016.07.011
|
[20] |
Yang L, Zhou Y, Li Y, et al. Mutations of p53 and KRAS activate NF-κB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells[J]. Cancer Lett, 2015,357(2):520-526. DOI: 10.1016/j.canlet.2014.12.003.
doi: 10.1016/j.canlet.2014.12.003
|
[21] |
Deneka AY, Haber L, Kopp MC, et al. Tumor-targeted SN38 inhi-bits growth of early stage non-small cell lung cancer (NSCLC) in a KRas/p53 transgenic mouse model[J]. PLoS One, 2017,12(4):e0176747. DOI: 10.1371/journal.pone.0176747.
doi: 10.1371/journal.pone.0176747
|
[22] |
Kim H, Hwang H, Lee H, et al. L1 cell adhesion molecule promotes migration and invasion via JNK activation in extrahepatic cholangiocarcinoma cells with activating KRAS mutation[J]. Mol Cells, 2017,40(5):363-370. DOI: 10.14348/molcells.2017.2282.
doi: 10.14348/molcells.2017.2282
|
[23] |
Du L, Kim JJ, Shen J, et al. KRAS and TP53 mutations in inflammatory bowel disease-associated colorectal cancer: a meta-analysis[J]. Oncotarget, 2017,8(13):22175-22186. DOI: 10.18632/oncotarget.14549.
doi: 10.18632/oncotarget.14549
|
[24] |
Román M, Baraibar I, López I, et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target[J]. Mol Cancer, 2018,17(1):33. DOI: 10.1186/s12943-018-0789-x.
doi: 10.1186/s12943-018-0789-x
|