国际肿瘤学杂志 ›› 2020, Vol. 47 ›› Issue (8): 496-500.doi: 10.3760/cma.j.cn371439-20191120-00064
收稿日期:
2019-11-20
修回日期:
2020-02-27
出版日期:
2020-08-08
发布日期:
2020-10-22
通讯作者:
吕银
E-mail:lvyin406@163.com
基金资助:
Shu Hang1, Xu Zhonghua1, Zhu Haochen2, Yang Yahui2, Lyu Yin1()
Received:
2019-11-20
Revised:
2020-02-27
Online:
2020-08-08
Published:
2020-10-22
Contact:
Lyu Yin
E-mail:lvyin406@163.com
Supported by:
摘要:
放疗在宫颈癌的治疗中具有重要作用。宫颈癌的放疗敏感性通常与基因、RNA调控、肿瘤微环境、药物等多种因素密切相关。近期众多研究不断探寻这些因素在宫颈癌放疗增敏中的机制,并在基础或临床方面不断取得进展。
舒航, 徐中华, 朱皓晨, 杨雅慧, 吕银. 宫颈癌放疗敏感性研究进展[J]. 国际肿瘤学杂志, 2020, 47(8): 496-500.
Shu Hang, Xu Zhonghua, Zhu Haochen, Yang Yahui, Lyu Yin. Research progress of radiosensitivity in cervical cancer[J]. Journal of International Oncology, 2020, 47(8): 496-500.
[1] | 郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2015,41(1):19-28. DOI: 10.3760/cma.j.issn.0253-3766.2019.01.008. |
[2] |
Liontos M, Kyriazoglou A, Dimitriadis I, et al. Systemic therapy in cervical cancer: 30 years in review[J]. Crit Rev Oncol Hematol, 2019,137:9-17. DOI: 10.1016/j.critrevonc.2019.02.009.
doi: 10.1016/j.critrevonc.2019.02.009 pmid: 31014518 |
[3] |
Li X, Fang F, Gao Y, et al. ROS induced by killerred targeting mitochondria (mtKR) enhances apoptosis caused by radiation via Cyt c/Caspase-3 pathway[J]. Oxid Med Cell Longev, 2019,2019:4528616. DOI: 10.1155/2019/4528616.
pmid: 30984335 |
[4] |
Noordhuis MG, Eijsink JJ, Ten Hoor KA, et al. Expression of epidermal growth factor receptor (EGFR) and activated EGFR predict poor response to (chemo)radiation and survival in cervical cancer[J]. Clin Cancer Res, 2009,15(23):7389-7397. DOI: 10.1158/1078-0432.CCR-09-1149.
doi: 10.1158/1078-0432.CCR-09-1149 pmid: 19920104 |
[5] |
Wei H, Zhu Z, Lu L. Inhibition of EGFR nuclear shuttling decreases irradiation resistance in HeLa cells[J]. Folia Histochem Cytobiol, 2017,55(2):43-51. DOI: 10.5603/FHC.a2017.0007.
doi: 10.5603/FHC.a2017.0007 pmid: 28518211 |
[6] |
De Sanjosé S, Brotons M, Pavón MA. The natural history of human papillomavirus infection[J]. Best Pract Res Clin Obstet Gynaecol, 2018,47:2-13. DOI: 10.1016/j.bpobgyn.2017.08.015.
doi: 10.1016/j.bpobgyn.2017.08.015 pmid: 28964706 |
[7] |
Su X, Chen WJ, Xiao SW, et al. Effect and safety of recombinant adenovirus-p53 transfer combined with radiotherapy on long-term survival of locally advanced cervical cancer[J]. Hum Gene Ther, 2016,27(12):1008-1014. DOI: 10.1089/hum.2016.043.
pmid: 27575731 |
[8] |
Ge TT, Yang M, Chen Z, et al. UHRF1 gene silencing inhibits cell proliferation and promotes cell apoptosis in human cervical squamous cell carcinoma CaSki cells[J]. J Ovarian Res, 2016,9(1):42. DOI: 10.1186/s13048-016-0253-8.
doi: 10.1186/s13048-016-0253-8 pmid: 27431502 |
[9] |
Zhang Q, Qiao L, Wang X, et al. UHRF1 epigenetically down-regulates UbcH8 to inhibit apoptosis in cervical cancer cells[J]. Cell Cycle, 2018,17(3):300-308. DOI: 10.1080/15384101.2017.1403686.
doi: 10.1080/15384101.2017.1403686 pmid: 29157076 |
[10] |
Yu XP, Wu YM, Liu Y, et al. IER5 is involved in DNA double-strand breaks repair in association with PAPR1 in Hela cells[J]. Int J Med Sci, 2017,14(12):1292-1300. DOI: 10.7150/ijms.21510.
doi: 10.7150/ijms.21510 pmid: 29104487 |
[11] |
Liu Y, Tian M, Zhao H, et al. IER5 as a promising predictive marker promotes irradiation-induced apoptosis in cervical cancer tissues from patients undergoing chemoradiotherapy[J]. Oncotarget, 2017,8(22):36438-36448. DOI: 10.18632/oncotarget.16857.
doi: 10.18632/oncotarget.16857 pmid: 28430589 |
[12] |
Shi HM, Ding KK, Zhou PK, et al. Radiation-induced expression of IER5 is dose-dependent and not associated with the clinical outcomes of radiotherapy in cervical cancer[J]. Oncol Lett, 2016,11(2):1309-1314. DOI: 10.3892/ol.2016.4086.
doi: 10.3892/ol.2016.4086 pmid: 26893736 |
[13] |
Prabakaran DS, Muthusami S, Sivaraman T, et al. Silencing of FTS increases radiosensitivity by blocking radiation-induced Notch1 activation and spheroid formation in cervical cancer cells[J]. Int J Biol Macromol, 2019,126:1318-1325. DOI: 10.1016/j.ijbiomac.2018.09.114.
pmid: 30244128 |
[14] |
Muthusami S, Prabakaran DS, Yu JR, et al. FTS is responsible for radiation-induced nuclear phosphorylation of EGFR and repair of DNA damage in cervical cancer cells[J]. J Cancer Res Clin Oncol, 2015,141(2):203-210. DOI: 10.1007/s00432-014-1802-4.
doi: 10.1007/s00432-014-1802-4 pmid: 25151576 |
[15] |
Ye C, Sun NX, Ma Y, et al. MicroRNA-145 contributes to enhancing radiosensitivity of cervical cancer cells[J]. FEBS Lett, 2015,589(6):702-709. DOI: 10.1016/j.febslet.2015.01.037.
doi: 10.1016/j.febslet.2015.01.037 pmid: 25666710 |
[16] |
Lu H, Jin PY, Tang Y, et al. microRNA-136 inhibits proliferation and promotes apoptosis and radiosensitivity of cervical carcinoma through the NF-κB pathway by targeting E2F1[J]. Life Sci, 2018,199:167-178. DOI: 10.1016/j.lfs.2018.02.016.
doi: 10.1016/j.lfs.2018.02.016 pmid: 29452167 |
[17] |
Sun H, Fan G, Deng C, et al. miR-4429 sensitized cervical cancer cells to irradiation by targeting RAD51[J]. J Cell Physiol, 2020,235(1):185-193. DOI: 10.1002/jcp.28957.
doi: 10.1002/jcp.28957 pmid: 31190335 |
[18] |
Zhao H, Zheng GH, Li GC, et al. Long noncoding RNA LINC00958 regulates cell sensitivity to radiotherapy through RRM2 by binding to microRNA-5095 in cervical cancer[J]. J Cell Physiol, 2019,234(12):23349-23359. DOI: 10.1002/jcp.28902.
doi: 10.1002/jcp.28902 pmid: 31169309 |
[19] |
Dellas K, Bache M, Pigorsch SU, et al. Prognostic impact of HIF-1alpha expression in patients with definitive radiotherapy for cervical cancer[J]. Strahlenther Onkol, 2008,184(3):169-174. DOI: 10.1007/s00066-008-1764-z.
doi: 10.1007/s00066-008-1764-z |
[20] |
Li N, Meng DD, Gao L, et al. Overexpression of HOTAIR leads to radioresistance of human cervical cancer via promoting HIF-1α expression[J]. Radiat Oncol, 2018,13(1):210. DOI: 10.1186/s13014-018-1153-4.
doi: 10.1186/s13014-018-1153-4 pmid: 30355300 |
[21] |
Huang XQ, Chen X, Xie XX, et al. Co-expression of CD147 and GLUT-1 indicates radiation resistance and poor prognosis in cervical squamous cell carcinoma[J]. Int J Clin Exp Pathol, 2014,7(4):1651-1666.
pmid: 24817962 |
[22] |
Kanjanapan Y, Deb S, Young RJ, et al. Glut-1 expression in small cervical biopsies is prognostic in cervical cancers treated with chemoradiation[J]. Clin Transl Radiat Oncol, 2017,2:53-58. DOI: 10.1016/j.ctro.2017.01.003.
doi: 10.1016/j.ctro.2017.01.003 pmid: 29658001 |
[23] |
Shrivastava S, Mahantshetty U, Engineer R, et al. Cisplatin chemoradiotherapy vs radiotherapy in FIGO stage ⅢB squamous cell carcinoma of the uterine cervix: a randomized clinical trial[J]. JAMA Oncol, 2018,4(4):506-513. DOI: 10.1001/jamaoncol.2017.5179.
doi: 10.1001/jamaoncol.2017.5179 |
[24] |
Wang W, Hou X, Yan J, et al. Outcome and toxicity of radical radiotherapy or concurrent chemoradiotherapy for elderly cervical cancer women[J]. BMC Cancer, 2017,17(1):510. DOI: 10.1186/s12885-017-3503-2.
pmid: 28764676 |
[25] |
Fu ZZ, Li K, Peng Y, et al. Efficacy and toxicity of different concurrent chemoradiotherapy regimens in the treatment of advanced cervical cancer: a network meta-analysis[J]. Medicine (Baltimore), 2017,96(2):e5853. DOI: 10.1097/MD.0000000000005853.
doi: 10.1097/MD.0000000000005853 |
[26] |
Chen YF, Tang WB, Pan XX, et al. Safety and efficacy of nimotuzumab combined with chemoradiotherapy in Chinese patients with locally advanced cervical cancer[J]. Onco Targets Ther, 2017,10:4113-4119. DOI: 10.2147/OTT.S133756.
doi: 10.2147/OTT.S133756 pmid: 28860820 |
[27] |
Lu H, Wu Y, Liu X, et al. A prospective study on neoadjuvant chemoradiotherapy plus anti-EGFR monoclonal antibody followed by surgery for locally advanced cervical cancer[J]. Onco Targets Ther, 2018,11:3785-3792. DOI: 10.2147/OTT.S164071.
pmid: 29997439 |
[28] |
Yoshida K, Suzuki S, Sakata J, et al. The upregulated expression of vascular endothelial growth factor in surgically treated patients with recurrent/radioresistant cervical cancer of the uterus[J]. Oncol Lett, 2018,16(1):515-521. DOI: 10.3892/ol.2018.8610.
doi: 10.3892/ol.2018.8610 pmid: 29928441 |
[29] |
Mann M, Kumar S, Sharma A, et al. PARP-1 inhibitor modulate β-catenin signaling to enhance cisplatin sensitivity in cancer cervix[J]. Oncotarget, 2019,10(42):4262-4275. DOI: 10.18632/oncotarget.27008.
doi: 10.18632/oncotarget.27008 pmid: 31303961 |
[30] |
Luo J, Zhu W, Tang Y, et al. Artemisinin derivative artesunate induces radiosensitivity in cervical cancer cells in vitro and in vivo[J]. Radiat Oncol, 2014,9:84. DOI: 10.1186/1748-717X-9-84.
doi: 10.1186/1748-717X-9-84 pmid: 24666614 |
[31] |
Zhang D, Dong Y, Zhao Y, et al. Sinomenine hydrochloride sensitizes cervical cancer cells to ionizing radiation by impairing DNA damage response[J]. Oncol Rep, 2018,40(5):2886-2895. DOI: 10.3892/or.2018.6693.
pmid: 30226618 |
[1] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
[2] | 张露, 蒋华, 林州, 马辰莺, 徐晓婷, 王利利, 周菊英. 免疫检查点抑制剂治疗复发转移性宫颈癌的疗效及预后分析[J]. 国际肿瘤学杂志, 2023, 50(8): 475-483. |
[3] | 吕璐, 孙鹏飞. 肠道菌群与宫颈癌[J]. 国际肿瘤学杂志, 2023, 50(6): 373-376. |
[4] | 段传菊, 陈真云, 李晓红, 牛洪朋, 李秀敏. 复发宫颈癌免疫治疗1例[J]. 国际肿瘤学杂志, 2023, 50(12): 766-768. |
[5] | 马雪艳, 鲁历历, 孙鹏飞. 免疫微环境在宫颈癌中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 47-50. |
[6] | 张露, 周菊英, 马辰莺, 林州. 复发转移性宫颈癌免疫治疗相关进展[J]. 国际肿瘤学杂志, 2022, 49(9): 517-520. |
[7] | 史英侠, 胡莉钧, 于静萍. 免疫检查点抑制剂在复发或转移性宫颈癌治疗中的应用[J]. 国际肿瘤学杂志, 2022, 49(9): 568-571. |
[8] | 彭琛, 谢印通, 张昕, 谢鹏. 宫颈癌维持治疗研究进展[J]. 国际肿瘤学杂志, 2022, 49(7): 430-435. |
[9] | 肖楠, 孙鹏飞. 氧化应激在胶质瘤放化疗敏感性中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 357-361. |
[10] | 熊婵, 阎英, 谢晓冬, 孟繁杰, 于卉影. 辐射诱导的多倍体宫颈癌HeLa细胞生物学特性研究[J]. 国际肿瘤学杂志, 2022, 49(5): 263-269. |
[11] | 袁晨阳, 周菊英. 宫颈癌预后因素的研究进展[J]. 国际肿瘤学杂志, 2022, 49(5): 307-313. |
[12] | 袁晨阳, 周菊英, 杜霄, 纪环, 赵天翼. 宫颈癌2018与2009 FIGO分期的比较及预后因素分析[J]. 国际肿瘤学杂志, 2022, 49(3): 151-163. |
[13] | 王玥, 吴琼, 许愿, 龚唯, 徐晓婷. 老年宫颈癌的筛查与治疗进展[J]. 国际肿瘤学杂志, 2022, 49(12): 754-758. |
[14] | 马秀珍, 卢艳, 赵冰冰, 邱宏聪, 徐勋, 韦敏. 岗松总黄酮对宫颈癌SiHa细胞迁移、侵袭及凋亡的影响[J]. 国际肿瘤学杂志, 2021, 48(4): 206-211. |
[15] | 牛雯娟, 段文杰, 苏雅婷, 魏芳. 对2018年国际妇产联盟宫颈癌新分期的思考[J]. 国际肿瘤学杂志, 2021, 48(10): 627-630. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||