[1] Dutta A, Yang C, Sengupta S, et al. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins[J]. Cell Mol Life Sci, 2015, 72(9): 1679-1698. DOI: 10.1007/s00018-014-1820-z.
[2] Abbotts R, Wilson DM 3rd. Coordination of DNA single strand break repair[J]. Free Radic Biol Med, 2017, 107: 228-244. DOI: 10.1016/j.freeradbiomed.2016.11.039.
[3] Bharti SK, Brosh RM. Finetuning DNA repair by protein acetylation[J]. Cell Cycle, 2016, 15(15): 1952-1953. DOI: 10.1080/15384101.2016.1191250.
[4] Matulonis UA, Penson RT, Domchek SM, et al. Olaparib monotherapy in patients with advanced relapsed ovarian cancer and a germline BRCA1/2 mutation: a multistudy analysis of response rates and safety[J]. Ann Oncol, 2016, 27(6): 1013-1019. DOI: 10.1093/annonc/mdw133.
[5] Gavande NS, VandervereCarozza PS, Hinshaw HD, et al. DNA repair targeted therapy: the past or future of cancer treatment?[J]. Pharmacol Ther, 2016, 160: 65-83. DOI: 10.1016/j.pharmthera.2016.02.003.
[6] Mateo J, Carreira S, Sandhu S, et al. DNArepair defects and olaparib in metastatic prostate cancer[J]. N Engl J Med, 2015, 373(18): 1697-1708. DOI: 10.1056/NEJMoa1506859.
[7] Mccrudden CM, O′rourke MG, Cherry KE, et al. Vasoactivity of rucaparib, a PARP1 inhibitor, is a complex process that involves myosin light chain kinase, P2 receptors, and PARP itself[J]. PLoS One, 2015, 10(2): e0118187. DOI: 10.1371/journal.pone.0118187.
[8] Drew Y, Ledermann J, Hall G, et al. Phase 2 multicentre trial investigating intermittent and continuous dosing schedules of the poly(ADPribose) polymerase inhibitor rucaparib in germline BRCA mutation carriers with advanced ovarian and breast cancer[J]. Br J Cancer, 2016, 114(7): 723730. DOI: 10.1038/bjc.2016.41.
[9] Mirza MR, Monk BJ, Herrstedt J, et al. Niraparib maintenance therapy in platinumsensitive, recurrent ovarian cancer[J]. N Engl J Med, 2016, 375(22): 2154-2164. DOI: 10.1056/NEJMoa1611310.
[10] Engert F, Kovac M, Baumhoer D, et al. Osteosarcoma cells with genetic signatures of BRCAness are susceptible to the PARP inhibitor talazoparib alone or in combination with chemotherapeutics[J]. Oncotarget, 2017, 8(30): 48794-48806. DOI: 10.18632/oncotarget.10720.
[11] Kim Y, Kim A, Sharip A, et al. Reverse the resistance to PARP inhibitors[J]. Int J Biol Sci, 2017, 13(2): 198-208. DOI: 10.7150/ijbs.17240.
[12] Laev SS, Salakhutdinov NF, Lavrik OI. Inhibitors of nuclease and redox activity of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref1)[J]. Bioorg Med Chem, 2017, 25(9): 2531-2544. DOI: 10.1016/j.bmc.2017.01.028.
[13] Tell G, Fantini D, Quadrifoglio F. Understanding different functions of mammalian AP endonuclease (APE1) as a promising tool for cancer treatment[J]. Cell Mol Life Sci, 2010, 67(21): 3589-3608. DOI: 10.1007/s00018-010-0486-4.
[14] 崔熠, 金孝华, 胡玮. 大豆异黄酮对乳腺癌细胞抑癌基因启动子区的去甲基化作用研究[J]. 中国计划生育学杂志, 2014, 22(6): 381-385. DOI: 10.3969/j.issn.1004-8189.2014.06.
[15] 王东. 基于DNA损伤修复的分子靶向治疗: 肿瘤靶向治疗的新篇章[J]. 第三军医大学学报, 2014, 36(22): 22432248.
[16] He LF, Luo L, Zhu H, et al.FEN1 promotes tumor progression and confers cisplatin resistance in NSCLC[J]. Mol Oncol, 2017, 11(6): 640-654. DOI: 10.1002/1878-0261.12058.
[17] Zhou T, Pan F, Cao Y, et al. R152C DNA pol β mutation impairs base excision repair and induces cellular transformation[J]. Oncotarget, 2016, 7(6): 6902-6915. DOI: 10.18632/oncotarget.6849.
[18] Nemec AA, Donigan KA, Murphy DL, et al. Colon cancerassociated DNA polymerase β variant induces genomic instability and cellular transformation[J]. J Biol Chem, 2012, 287(28): 23840-23849. DOI: 10.1074/jbc.M112.362111.
[19] Jaiswal AS, Banerjee S, Aneja R, et al. DNA polymerase-β as a novel target for chemotherapeutic intervention of colorectal cancer[J]. PLoS One, 2011, 6(2): e16691. DOI: 10.1371/journal.pone.0016691.
[20] Capp JP, Boudsocq F, Bergoglio V, et al. The R438W polymorphism of human DNA polymerase lambda triggers cellular sensitivity to camptothecin by compromising the homologous recombination repair pathway[J]. Carcinogenesis, 2010, 31(10): 17421747. DOI: 10.1093/carcin/bgq166.
[21] Mentegari E, Kissova M, Bavagnoli L, et al. DNA polymerases λ and β: the doubleedged swords of DNA repair[J]. Genes (Basel), 2016, 7(9): 57. DOI: 10.3390/genes7090057.
[22] Gao XR, Zhang SL, Yang YF, et al. FEN1 69G>A and 4150G>T polymorphisms and cancer risk in Chinese population[J]. Sci Rep, 2014, 4: 6183. DOI: 10.1038/srep06183.
[23] He L, Zhang Y, Sun H, et al. Targeting DNA flap endonuclease 1 to impede breast cancer progression[J]. EBioMedicine, 2016, 14: 3243. DOI: 10.1016/j.ebiom.2016.11.012.
[24] TalsethPalme BA.The genetic basis of colonic adenomatous polyposis syndromes[J]. Hered Cancer Clin Pract, 2017, 15: 5. DOI: 10.1186/s130530170065x.
[25] 马俊, 侯小强, 郑秋生, 等. DNA修复酶基因NEIL1的AI RNA编辑水平在白血病和乳腺癌细胞中的下调[J]. 军事医学, 2014, 38(6): 458462. DOI: 10.7644/j.issn.1674-9960.2014.06.013.
[26] Dizdaroglu M, Coskun E, Jaruga P. Repair of oxidatively induced DNA damage by DNA glycosylases: mechanisms of action, substrate specificities and excision kinetics[J]. Mutat Res, 2017, 771: 99-127. DOI: 10.1016/j.mrrev.2017.02.001.
[27] 付婷, 秦立强, 潘旭东, 等. XRCC1基因多态性与晚期非小细胞肺癌铂类化疗敏感性关系的Meta分析[J]. 江苏医药, 2015, 41(12): 14011403.
[28] Sanjari Moghaddam A, Nazarzadeh M, Noroozi R, et al. XRCC1 and OGG1 gene polymorphisms and breast cancer: a systematic review of literature[J]. Iran J Cancer Prev, 2016, 9(1): e3467. DOI: 10.17795/ijcp-3467. |