
国际肿瘤学杂志 ›› 2026, Vol. 53 ›› Issue (3): 187-192.doi: 10.3760/cma.j.cn371439-20250712-00031
• 综述 • 上一篇
收稿日期:2025-07-12
出版日期:2026-03-08
发布日期:2026-02-09
通讯作者:
孙晓彤,Email: 18893498631@163.com
Yang Qing1, He Xiyan2, Sun Xiaotong2(
)
Received:2025-07-12
Online:2026-03-08
Published:2026-02-09
摘要:
宫颈癌是女性生殖系统常见恶性肿瘤,其术后转移、复发及肿瘤放化疗抵抗仍是严峻挑战。铁死亡作为一种铁依赖性的程序性细胞死亡方式,可通过靶向相关分子和信号通路,在选择性诱导宫颈癌细胞死亡方面展现出潜力。开发靶向铁死亡的小分子药物及天然活性成分以逆转放化疗耐药性,并构建铁死亡生物标志物预后模型、探索免疫治疗联合策略,为乳腺癌精准治疗提供更多可能。深入阐明铁死亡在宫颈癌中的作用机制及靶向铁死亡对宫颈癌治疗的重要意义,可为宫颈癌的诊断、治疗提供一定的理论支撑。
杨青, 何西彦, 孙晓彤. 铁死亡在宫颈癌中的研究进展[J]. 国际肿瘤学杂志, 2026, 53(3): 187-192.
Yang Qing, He Xiyan, Sun Xiaotong. Research progress of ferroptosis in cervical cancer[J]. Journal of International Oncology, 2026, 53(3): 187-192.
| [1] | 马雪艳, 鲁历历, 孙鹏飞. 免疫微环境在宫颈癌中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 47-50. DOI: 10.3760/cma.j.cn371439-20220715-00009. |
| [2] | 曾浩然, 陈晓琪, 纪妹. 84例非HPV相关宫颈腺癌临床病理分析[J]. 现代妇产科进展, 2025, 34(4): 264-268. DOI: 10.13283/j.cnki.xdfckjz.2025.04.003. |
| [3] |
Lei G, Zhuang L, Gan B. The roles of ferroptosis in cancer: tumor suppression, tumor microenvironment, and therapeutic interventions[J]. Cancer Cell, 2024, 42(4): 513-534. DOI: 10.1016/j.ccell.2024.03.011.
pmid: 38593779 |
| [4] |
Cui K, Wang K, Huang Z. Ferroptosis and the tumor microenvironment[J]. J Exp Clin Cancer Res, 2024, 43(1): 315. DOI: 10.1186/s13046-024-03235-0.
pmid: 39614322 |
| [5] | Sun S, Shen J, Jiang J, et al. Targeting ferroptosis opens new avenues for the development of novel therapeutics[J]. Signal Transduct Target Ther, 2023, 8(1): 372. DOI: 10.1038/s41392-023-01606-1. |
| [6] | Jacquemyn J, Ralhan I, Ioannou MS. Driving factors of neuronal ferroptosis[J]. Trends Cell Biol, 2024, 34(7): 535-546. DOI: 10.1016/j.tcb.2024.01.010. |
| [7] | 叶敏, 郭秀英, 王丹心, 等. 中药靶向铁死亡治疗呼吸系统疾病的作用机制[J]. 生命的化学, 2025, 45(3): 440-449. DOI: 10.13488/j.smhx.20240659. |
| [8] | 陈悦, 陈雯昕, 蒋溢, 等. 宫颈癌预后相关铁死亡基因的筛选及其预后模型的构建[J]. 中国临床医学, 2025, 32(2): 259-267. DOI: 10.12025/j.issn.1008-6358.2025.20241404. |
| [9] | Arizmendi-Izazaga A, Navarro-Tito N, Jiménez-Wences H, et al. Metabolic reprogramming in cancer: role of HPV 16 variants[J]. Pathogens, 2021, 10(3): 347. DOI: 10.3390/pathogens10030347. |
| [10] | Chen S, Shen L, Luo S, et al. Association between serum iron levels and the risk of cervical cancer in Chinese: a meta-analysis[J]. J Int Med Res, 2020, 48(3): 300060519882804. DOI: 10.1177/0300060519882804. |
| [11] |
Braun JA, Herrmann AL, Blase JI, et al. Effects of the antifungal agent ciclopirox in HPV-positive cancer cells: repression of viral E6/E7 oncogene expression and induction of senescence and apoptosis[J]. Int J Cancer, 2020, 146(2): 461-474. DOI: 10.1002/ijc.32709.
pmid: 31603527 |
| [12] | Huang N, Wei Y, Cheng Y, et al. Iron metabolism protein transferrin receptor 1 involves in cervical cancer progression by affecting gene expression and alternative splicing in HeLa cells[J]. Genes Genomics, 2022, 44(6): 637-650. DOI: 10.1007/s13258-021-01205-w. |
| [13] | Jiang X, Peng Q, Peng M, et al. Cellular metabolism: a key player in cancer ferroptosis[J]. Cancer Commun, 2024, 44(2): 185-204. DOI: 10.1002/cac2.12519. |
| [14] |
Hu X, He Y, Han Z, et al. PNO1 inhibits autophagy-mediated ferroptosis by GSH metabolic reprogramming in hepatocellular carcinoma[J]. Cell Death Dis, 2022, 13(11): 1010. DOI: 10.1038/s41419-022-05448-7.
pmid: 36446769 |
| [15] |
Kobayashi H, Yoshimoto C, Matsubara S, et al. A comprehensive overview of recent developments on the mechanisms and pathways of ferroptosis in cancer: the potential implications for therapeutic strategies in ovarian cancer[J]. Cancer Drug Resist, 2023, 6(3): 547-566. DOI: 10.20517/cdr.2023.49.
pmid: 37842240 |
| [16] | Kim JW, Lee JY, Oh M, et al. An integrated view of lipid metabolism in ferroptosis revisited via lipidomic analysis[J]. Exp Mol Med, 2023, 55(8): 1620-1631. DOI: 10.1038/s12276-023-01077-y. |
| [17] |
Guo W, Duan Z, Wu J, et al. Epithelial-mesenchymal transition promotes metabolic reprogramming to suppress ferroptosis[J]. Semin Cancer Biol, 2025, 112: 20-35. DOI: 10.1016/j.semcancer.2025.02.013.
pmid: 40058616 |
| [18] | Rochette L, Dogon G, Rigal E, et al. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis[J]. Int J Mol Sci, 2022, 24(1): 449. DOI: 10.3390/ijms24010449. |
| [19] | Liu C, Liu Z, Dong Z, et al. Multifaceted interplays between the essential players and lipid peroxidation in ferroptosis[J]. J Genet Genomics, 2025, 52(9): 1071-1081. DOI: 10.1016/j.jgg.2025.01.009. |
| [20] | Yang M, Cui W, Lv X, et al. S100P is a ferroptosis suppressor to facilitate hepatocellular carcinoma development by rewiring lipid metabolism[J]. Nat Commun, 2025, 16(1): 509. DOI: 10.1038/s41467-024-55785-8. |
| [21] |
Taber A, Christensen E, Lamy P, et al. Author correction: molecular correlates of cisplatin-based chemotherapy response in muscle invasive bladder cancer by integrated multi-omics analysis[J]. Nat Commun, 2022, 13(1): 1916. DOI: 10.1038/s41467-022-29627-4.
pmid: 35379819 |
| [22] | Liu Y, Li L, Yang Z, et al. Circular RNA circACAP2 suppresses ferroptosis of cervical cancer during malignant progression by miR-193a-5p/GPX4[J]. J Oncol, 2022, 2022: 5228874. DOI: 10.1155/2022/5228874. |
| [23] | Wu P, Li C, Ye DM, et al. Circular RNA circEPSTI1 accelerates cervical cancer progression via miR-375/409-3P/515-5p-SLC7A11 axis[J]. Aging (Albany NY), 2021, 13(3): 4663-4673. DOI: 10.18632/aging.202518. |
| [24] | Ou R, Lu S, Wang L, et al. Circular RNA circLMO1 suppresses cervical cancer growth and metastasis by triggering miR-4291/ACSL4-mediated ferroptosis[J]. Front Oncol, 2022, 12: 858598. DOI: 10.3389/fonc.2022.858598. |
| [25] | Lu X, Zhang W, Zhang J, et al. EPAS1, a hypoxia-and ferroptosis-related gene, promotes malignant behaviour of cervical cancer by ceRNA and super-enhancer[J]. J Cell Mol Med, 2024, 28(9): e18361. DOI: 10.1111/jcmm.18361. |
| [26] | Yan R, Lin B, Jin W, et al. NRF2, a superstar of ferroptosis[J]. Antioxidants (Basel), 2023, 12(9): 1739. DOI: 10.3390/antiox12091739. |
| [27] | Zhang Z, Hu Q, Ye S, et al. Inhibition of the PIN1-NRF2/GPX4 axis imparts sensitivity to cisplatin in cervical cancer cells[J]. Acta Biochim Biophys Sin (Shanghai), 2022, 54(9): 1325-1335. DOI: 10.3724/abbs.2022109. |
| [28] | Tie W, Ge F. Lymphoid-specific helicase inhibits cervical cancer cells ferroptosis by promoting Nrf2 expression[J]. PeerJ, 2023, 11: e16451. DOI: 10.7717/peerj.16451. |
| [29] | Tossetta G, Marzioni D. Targeting the NRF2/KEAP1 pathway in cervical and endometrial cancers[J]. Eur J Pharmacol, 2023, 941: 175503. DOI: 10.1016/j.ejphar.2023.175503. |
| [30] | Zhang S, Jin S, Zhang S, et al. Vitexin protects against high glucose-induced endothelial cell apoptosis and oxidative stress via wnt/β-catenin and Nrf2 signalling pathway[J]. Arch Physiol Biochem, 2024, 130(3): 275-284. DOI: 10.1080/13813455.2022.2028845. |
| [31] | Shi JX, Zhang ZC, Yin HZ, et al. RNA m6A modification in ferroptosis: implications for advancing tumor immunotherapy[J]. Mol Cancer, 2024, 23(1): 213. DOI: 10.1186/s12943-024-02132-6. |
| [32] | Gong Y, Luo G, Zhang S, et al. Transcriptome sequencing analysis reveals miR-30c-5p promotes ferroptosis in cervical cancer and inhibits growth and metastasis of cervical cancer xenografts by targeting the METTL3/KRAS axis[J]. Cell Signal, 2024, 117: 111068. DOI: 10.1016/j.cellsig.2024.111068. |
| [33] | Min L, Huo F, Zhu Z, et al. Mechanistic study of METTL3 inducing ferroptosis to promote cervical cancer progression through mediating m6A modification of COTE-1[J]. Cell Signal, 2025, 128: 111649. DOI: 10.1016/j.cellsig.2025.111649. |
| [34] | Li L, Zeng J, He S, et al. METTL14 decreases FTH1 mRNA stability via m6A methylation to promote sorafenib-induced ferroptosis of cervical cancer[J]. Cancer Biol Ther, 2024, 25(1): 2349429. DOI: 10.1080/15384047.2024.2349429. |
| [35] | Dong Y, Chang W, Lu B, et al. METTL5-mediated m6A modification of SLC7A11 promotes cervical cancer by inhibiting ferroptosis[J]. Int J Biochem Cell Biol, 2025, 186: 106822. DOI: 10.1016/j.biocel.2025.106822. |
| [36] | Zhang J, Tan B, Wu H, et al. Scutellaria baicalensis extracts restrict intestinal epithelial cell ferroptosis by regulating lipid peroxidation and GPX4/ACSL4 in colitis[J]. Phytomedicine, 2025, 141: 156708. DOI: 10.1016/j.phymed.2025.156708. |
| [37] | Zhao MY, Liu P, Sun C, et al. Propofol augments paclitaxel-induced cervical cancer cell ferroptosis in vitro[J]. Front Pharmacol, 2022, 13: 816432. DOI: 10.3389/fphar.2022.816432. |
| [38] | Xiaofei J, Mingqing S, Miao S, et al. Oleanolic acid inhibits cervical cancer Hela cell proliferation through modulation of the ACSL4 ferroptosis signaling pathway[J]. Biochem Biophys Res Commun, 2021, 545: 81-88. DOI: 10.1016/j.bbrc.2021.01.028. |
| [39] | Hou X, Yang L, Wang K, et al. HELLS, a chromatin remodeler is highly expressed in pancreatic cancer and downregulation of it impairs tumor growth and sensitizes to cisplatin by reexpressing the tumor suppressor TGFBR3[J]. Cancer Med, 2021, 10(1): 350-364. DOI: 10.1002/cam4.3627. |
| [40] | Han S, Wang S, Lv X, et al. Ferroptosis-related genes in cervical cancer as biomarkers for predicting the prognosis of gynecological tumors[J]. Front Mol Biosci, 2023, 10: 1188027. DOI: 10.3389/fmolb.2023.1188027. |
| [41] | Qin W, He C, Jiang D, et al. Systematic construction and validation of a novel ferroptosis-related gene model for predicting prognosis in cervical cancer[J]. J Immunol Res, 2022, 2022: 2148215. DOI: 10.1155/2022/2148215. |
| [42] | Toledo RA, Jimenez C, Armaiz-Pena G, et al. Hypoxia-inducible factor 2 alpha (HIF2α) inhibitors: targeting genetically driven tumor hypoxia[J]. Endocr Rev, 2023, 44(2): 312-322. DOI: 10.1210/endrev/bnac025. |
| [43] |
Zhou H, Chen J, Fan M, et al. KLF14 regulates the growth of hepatocellular carcinoma cells via its modulation of iron homeostasis through the repression of iron-responsive element-binding protein 2[J]. J Exp Clin Cancer Res, 2023, 42(1): 5. DOI: 10.1186/s13046-022-02562-4.
pmid: 36600258 |
| [44] |
Lyu X, Ding X, Ye H, et al. KLF14 targets ITGB1 to inhibit the progression of cervical cancer via the PI3K/AKT signalling pathway[J]. Discov Oncol, 2022, 13(1): 30. DOI: 10.1007/s12672-022-00494-1.
pmid: 35570248 |
| [45] | Du Y, Ye H, Lin M, et al. KLF14 activates the JNK-signaling pathway to induce S-phase arrest in cervical cancer cells[J]. Front Immunol, 2023, 14: 1267950. DOI: 10.3389/fimmu.2023.1267950. |
| [46] |
Ye H, Ding X, Lv X, et al. KLF14 directly downregulates the expression of GPX4 to exert antitumor effects by promoting ferroptosis in cervical cancer[J]. J Transl Med, 2024, 22(1): 923. DOI: 10.1186/s12967-024-05714-6.
pmid: 39390559 |
| [47] |
Ruprecht JJ, Kunji ERS. The SLC25 mitochondrial carrier family: structure and mechanism[J]. Trends Biochem Sci, 2020, 45(3): 244-258. DOI: 10.1016/j.tibs.2019.11.001.
pmid: 31787485 |
| [48] | Chen G, Mo S, Yuan D. Upregulation mitochondrial carrier 1 (MTCH1) is associated with cell proliferation, invasion, and migration of liver hepatocellular carcinoma[J]. Biomed Res Int, 2021, 2021: 9911784. DOI: 10.1155/2021/9911784. |
| [49] |
Wang X, Ji Y, Qi J, et al. Mitochondrial carrier 1 (MTCH1) governs ferroptosis by triggering the FoxO1-GPX4 axis-mediated retrograde signaling in cervical cancer cells[J]. Cell Death Dis, 2023, 14(8): 508. DOI: 10.1038/s41419-023-06033-2.
pmid: 37550282 |
| [50] | 杨加宁, 张立然. 雷帕霉素抑制mTOR激活自噬并调控铁死亡降低宫颈癌细胞增殖、侵袭及迁移能力的实验研究[J]. 现代检验医学杂志, 2025, 40(3): 42-46. DOI: 10.3969/j.issn.1671-7414.2025.03.008. |
| [51] | Kumar L, Upadhyay A, Jayaraj AS. Chemotherapy and immune check point inhibitors in the management of cervical cancer[J]. Curr Probl Cancer, 2022, 46(6): 100900. DOI: 10.1016/j.currproblcancer.2022.100900. |
| [52] | 张鹏, 葛亮, 孔令国, 等. 咪达唑仑通过调节Nrf2/HO-1信号通路对宫颈癌细胞铁死亡的作用及机制研究[J]. 实用医学杂志, 2023, 39(14): 1740-1745. DOI: 10.3969/j.issn.1006-5725.2023.14.003. |
| [53] | Jin J, Fan Z, Long Y, et al. Matrine induces ferroptosis in cervical cancer through activation of piezo1 channel[J]. Phytomedicine, 2024, 122: 155165. DOI: 10.1016/j.phymed.2023.155165. |
| [54] | Alakkal A, Thayyullathil F, Pallichankandy S, et al. Sanguinarine induces H2O2-dependent apoptosis and ferroptosis in human cervical cancer[J]. Biomedicines, 2022, 10(8): 1795. DOI: 10.3390/biomedicines10081795. |
| [55] | 董晶晶, 石少卿, 李玉琼, 等. 土荆皮乙酸上调HMOX1诱导宫颈癌Siha细胞凋亡和铁死亡[J]. 现代肿瘤医学, 2024, 32(18): 3413-3419. DOI: 10.3969/j.issn.1672-4992.2024.18.003. |
| [56] | Samare-Najaf M, Samareh A, Savardashtaki A, et al. Non-apoptotic cell death programs in cervical cancer with an emphasis on ferroptosis[J]. Crit Rev Oncol Hematol, 2024, 194: 104249. DOI: 10.1016/j.critrevonc.2023.104249. |
| [57] |
Yong X, Zhang Y, Tang H, et al. CDKN2A inhibited ferroptosis through activating JAK2/STAT3 pathway to modulate cisplatin resistance in cervical squamous cell carcinoma[J]. Anticancer Drugs, 2024, 35(8): 698-708. DOI: 10.1097/CAD.00000000000 01620.
pmid: 38748610 |
| [58] | Jiang L, Duan B, Jia P, et al. The role of intratumor microbiomes in cervical cancer metastasis[J]. Cancers (Basel), 2023, 15(2): 509. DOI: 10.3390/cancers15020509. |
| [59] | Li P, Lv X, Liu L, et al. The role of ferroptosis-related molecules and significance of ferroptosis score in cervical cancer[J]. J Oncol, 2022, 2022: 7835698. DOI: 10.1155/2022/7835698. |
| [1] | 史海燕, 马彦, 王若莹, 邵萨如拉, 郭瑞芳. VGLL1-TEAD4复合体在肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2026, 53(3): 174-177. |
| [2] | 张龙, 李建振, 张伟. 侵袭性伪足在肿瘤转移中的作用机制与治疗转化前沿[J]. 国际肿瘤学杂志, 2026, 53(2): 100-104. |
| [3] | 赵悦, 宋陈晨, 梁天赐, 王辉, 问婷芝, 戎彪学. ROS1基因突变非小细胞肺癌分子靶向治疗研究进展[J]. 国际肿瘤学杂志, 2026, 53(2): 105-110. |
| [4] | 赵元, 姚文涛. 恶性肿瘤新辅助免疫治疗的现状与挑战[J]. 国际肿瘤学杂志, 2026, 53(1): 47-52. |
| [5] | 澈根, 乌日汗, 朱恬恬, 东丽. 非小细胞肺癌中cGAS-STING信号通路的作用机制及其靶向治疗策略[J]. 国际肿瘤学杂志, 2025, 52(9): 587-591. |
| [6] | 梁茁, 王永鹏. 罕见高级别子宫内膜间质肉瘤1例[J]. 国际肿瘤学杂志, 2025, 52(9): 603-605. |
| [7] | 中国研究型医院学会放射肿瘤学专业委员会, 河北省数理医学学会, 天津市精准医疗学会. 初诊肺癌合并阻塞性肺炎临床诊疗专家共识[J]. 国际肿瘤学杂志, 2025, 52(8): 484-494. |
| [8] | 赵芳, 姜国荣, 史淑月, 肖剑, 马少林, 李润浦. 阿特珠单抗联合安罗替尼治疗晚期非小细胞肺癌疗效观察[J]. 国际肿瘤学杂志, 2025, 52(8): 495-501. |
| [9] | 张百红, 岳红云. 靶向肿瘤转移的新策略[J]. 国际肿瘤学杂志, 2025, 52(8): 528-531. |
| [10] | 吴鑫, 任海朋. KRASG12C抑制剂在晚期结直肠癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(8): 538-542. |
| [11] | 刘琦, 曲国斌, 朱健, 吴凡. 双能CT虚拟平扫图像代替真实平扫图像在光子与质子放疗剂量计算中的可行性研究[J]. 国际肿瘤学杂志, 2025, 52(7): 401-408. |
| [12] | 张露莹, 梁嘉欣, 赵可雷, 袁晓晗, 刘亮博, 路平, 张桂芳, 张敏. 驱动基因阴性晚期NSCLC一线免疫及其联合治疗进展后不同二线治疗策略疗效的真实世界研究[J]. 国际肿瘤学杂志, 2025, 52(7): 419-425. |
| [13] | 朱健. 肿瘤质子放疗剂量学特点序言[J]. 国际肿瘤学杂志, 2025, 52(7): 432-433. |
| [14] | 吴仕章, 胡漫, 戴天缘, 李成强, 陶城, 段敬豪, 陈进琥, 白曈, 孔甜, 朱健. 全中枢神经系统肿瘤1例质子放疗剂量学特点分析[J]. 国际肿瘤学杂志, 2025, 52(7): 434-440. |
| [15] | 徐渐, 段敬豪, 刘庆增, 朱健. 脊索瘤质子放疗中能谱CT参数与MRI ADC变化的相关性研究[J]. 国际肿瘤学杂志, 2025, 52(7): 441-447. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||