国际肿瘤学杂志 ›› 2026, Vol. 53 ›› Issue (3): 157-162.doi: 10.3760/cma.j.cn371439-20250616-00025

• 论著 • 上一篇    下一篇

高危局限性前列腺癌根治性手术后生化持续/复发的影响因素及其预测效能分析

郭雪涛1, 乔巨龙1, 邵鸿江1, 王昕1, 苏日古格1, 刘璐1, 梁鲁2()   

  1. 1内蒙古自治区包头市中心医院泌尿外科,包头 014040
    2内蒙古自治区包头市中心医院肝胆外科,包头 014040
  • 收稿日期:2025-06-16 出版日期:2026-03-08 发布日期:2026-02-09
  • 通讯作者: 梁鲁,Email: guoxuetao008@163.com

Analysis of influencing factors and predictive efficacy of biochemical persistence/recurrence after radical resection for high-risk localized prostate cancer

Guo Xuetao1, Qiao Julong1, Shao Hongjiang1, Wang Xin1, Su Riguge1, Liu Lu1, Liang Lu2()   

  1. 1Department of Urology Surgery,Baotou City Central Hospital,Inner Mongolia Autonomous Region,Baotou 014040,China
    2Department of Hepatobiliary Surgery,Baotou City Central Hospital,Inner Mongolia Autonomous Region,Baotou 014040,China
  • Received:2025-06-16 Online:2026-03-08 Published:2026-02-09

摘要:

目的 探讨高危局限性前列腺癌根治性手术后生化持续/复发的影响因素,并分析基于影响因素构建的列线图模型用于预测术后生化持续/复发的临床效能。方法 选择2016年1月至2023年1月于内蒙古自治区包头市中心医院行根治性手术的172例高危局限性前列腺癌患者为研究对象。比较生化持续/复发患者和未生化持续/复发患者临床病理特征,采用二元logistic回归分析高危局限性前列腺癌患者根治性手术后生化持续/复发的影响因素。基于多因素分析结果构建列线图模型,采用受试者操作特征(ROC)曲线评估模型的预测效能,采用校准曲线评估模型的准确性和实用性。结果 172例患者出现生化持续42例,生化复发32例,另有4例发生去势抵抗。生化持续/复发(n=74)和未生化持续/复发(n=98)患者间基线前列腺特异性抗原密度(PSAD)(t=6.93,P<0.001)、病理国际泌尿外科病理学会(ISUP)分级(χ2=17.31,P<0.001)、切缘状态(χ2=29.29,P<0.001)差异均有统计学意义。多因素分析显示,基线PSAD(OR=0.01,95%CI为0.00~0.04,P<0.001)、病理ISUP分级(OR=0.27,95%CI为0.12~0.61,P=0.002)、切缘状态(OR=0.18,95%CI为0.08~0.40,P<0.001)均是高危局限性前列腺癌患者根治性手术后生化持续/复发的独立影响因素。基于多因素分析结果构建高危局限性前列腺癌患者根治性手术后生化持续/复发风险列线图模型,logit(P)=4.84-5.99×基线PSAD-1.32×病理ISUP分级-1.72×切缘状态。ROC曲线分析显示,基线PSAD、病理ISUP分级、切缘状态、列线图模型预测高危局限性前列腺癌根治性手术后患者发生生化持续/复发的曲线下面积(AUC)分别为0.76、0.66、0.71、0.88,列线图模型预测的AUC高于其他3个指标单独预测(Z=-3.62,P<0.001;Z=-4.59,P<0.001;Z=-2.36,P<0.001)。该列线图模型的C-index为0.878,列线图模型具有良好的拟合优度(Hosmer-Lemeshow χ2=3.51,P=0.752)。校准曲线显示,列线图模型的预测曲线贴近理想标准曲线,没有出现明显偏离现象,具有较好的预测准确性。结论 基线PSAD、病理ISUP分级、切缘状态均是高危局限性前列腺癌患者根治性手术后生化持续/复发的独立影响因素,基于上述临床病理指标构建的列线图模型显示出良好的预测效能。

关键词: 前列腺肿瘤, 影响因素分析, 生化持续, 生化复发

Abstract:

Objective To investigate the influencing factors and predictive efficacy of biochemical persistence/recurrence (BPR) after radical resection for high-risk localized prostate cancer (HR-LPCa),and to analyze the clinical performance of a nomogram model constructed based on the influencing factors in predicting postoperative BPR.Methods A total of 172 patients with HR-LPCa who underwent radical resection at Baotou City Central Hospital,Inner Mongolia Autonomous Region from January 2016 to January 2023 were selected as research subjects. Clinicopathological characteristics were compared between patients with and without BPR,and binary logistic regression was used to analyze the influencing factors of postoperative BPR in HR-LPCa patients. A nomogram model was constructed based on the results of multivariate analysis. The receiver operator characteristic (ROC) curve was used to evaluate the predictive efficacy of the model,and the calibration curve was used to assess the accuracy and practicality of the model.Results Among the 172 patients,42 developed biochemical persistence,32 had biochemical recurrence,and 4 progressed to castration resistance. There were statistically significant differences between patients with BPR (n=74) and without BPR (n=98) in baseline prostate-specific antigen density (PSAD) (t=6.93,P<0.001),pathological International Society of Urological Pathology (ISUP) grade (χ²=17.31,P<0.001),and surgical margin status (χ²=29.29,P<0.001). Multivariate analysis showed that,baseline PSAD (OR=0.01,95%CI: 0.00-0.04,P<0.001),pathological ISUP grade (OR=0.27,95%CI: 0.12-0.61,P=0.002),and surgical margin status (OR=0.18,95%CI: 0.08-0.40,P<0.001) were independent influencing factors for BPR after radical resection in HR-LPCa patients. Based on the multivariate analysis results,a nomogram model was constructed to predict the risk of BPR after radical resection in HR-LPCa patients,logit(P)=4.84-5.99×baseline PSAD-1.32×pathological ISUP grade-1.72×surgical margin status. The ROC curve analysis showed that,the area under the curve (AUC) values of baseline PSAD,pathological ISUP grade,surgical margin status,and the nomogram model for predicting BPR after radical resection in patients with HR-LPCa were 0.76,0.66,0.71,and 0.88,respectively. The AUC of the nomogram model was significantly higher than that of each of the other three indicators alone (Z=-3.62,P<0.001; Z=-4.59,P<0.001; Z=-2.36,P<0.001). The nomogram model exhibited a C-index of 0.878 and excellent goodness-of-fit (Hosmer-Lemeshow χ²=3.51,P=0.752). Calibration curves demonstrated that the predicted curve of the nomogram model closely approximated the ideal reference line without significant deviation,indicated good predictive accuracy.Conclusions Baseline PSAD,pathological ISUP grade,and surgical margin status are all independent influencing factors for BPR after radical resection in HR-LPCa patients. The nomogram model constructed based on the above clinicopathological indicators shows good predictive performance.

Key words: Prostatic neoplasms, Root cause analysis, Biochemical persistence, Biochemical recurrence