
国际肿瘤学杂志 ›› 2025, Vol. 52 ›› Issue (9): 587-591.doi: 10.3760/cma.j.cn371439-20250415-00099
收稿日期:2025-04-15
修回日期:2025-05-01
出版日期:2025-09-08
发布日期:2025-10-21
通讯作者:
东丽
E-mail:dongli2126@126.com
基金资助:
Che Gen1, Wu Rihan1, Zhu Tiantian2, Dong Li1(
)
Received:2025-04-15
Revised:2025-05-01
Online:2025-09-08
Published:2025-10-21
Contact:
Dong Li
E-mail:dongli2126@126.com
Supported by:摘要:
非小细胞肺癌(NSCLC)的治疗因肿瘤异质性与免疫微环境的复杂性面临严峻挑战,环鸟苷酸-腺苷酸合成酶(cGAS)-干扰素基因刺激因子(STING)信号通路在NSCLC中具有双重作用,其既是抗肿瘤免疫的关键枢纽,也是潜在转移驱动因子。STING激动剂临床转化面临一系列挑战,如递送障碍、双刃剑效应、患者异质性等,探索STING激动剂与放化疗、免疫检查点抑制剂、新型免疫疗法的联合应用以及利用人工智能多组学模型实现个体化预测与治疗意义重大。深入解析cGAS-STING信号通路的分子调控网络及其在肿瘤微环境中的动态作用,对于克服目前靶向治疗的临床挑战、推动NSCLC免疫治疗策略的精准化发展具有重要意义。
澈根, 乌日汗, 朱恬恬, 东丽. 非小细胞肺癌中cGAS-STING信号通路的作用机制及其靶向治疗策略[J]. 国际肿瘤学杂志, 2025, 52(9): 587-591.
Che Gen, Wu Rihan, Zhu Tiantian, Dong Li. Mechanism of the cGAS-STING signaling pathway in non-small cell lung cancer and its targeted therapeutic strategies[J]. Journal of International Oncology, 2025, 52(9): 587-591.
| [1] | Yin ZS, Wang Z. Strategies for engineering oncolytic viruses to enhance cancer immunotherapy[J]. Front Pharmacol, 2024, 15: 1450203. DOI: 10.3389/fphar.2024.1450203. |
| [2] | Wang S, Li T, Sun H, et al. Mini-review: the distinct roles of sting signaling in tumor immunity-recent progress[J]. J Leukoc Biol, 2023, 114(2): 111-115. DOI: 10.1093/jleuko/qiad051. |
| [3] | Yue B, Gao W, Lovell JF, et al. The cGAS-STING pathway in cancer immunity: dual roles, therapeutic strategies, and clinical challenges[J]. Essays Biochem, 2025, 69(2): EBC20253006. DOI: 10.1042/EBC20253006. |
| [4] | Wei M, Li Q, Li S, et al. Multifaceted roles of cGAS-STING pathway in the lung cancer: from mechanisms to translation[J]. PeerJ, 2024, 12: e18559. DOI: 10.7717/peerj.18559. |
| [5] |
Fang L, Hao Y, Yu H, et al. Methionine restriction promotes cGAS activation and chromatin untethering through demethylation to enhance antitumor immunity[J]. Cancer Cell, 2023, 41(6): 1118-1133.e12. DOI: 10.1016/j.ccell.2023.05.005.
pmid: 37267951 |
| [6] | Wu L, Yan Y, Yuan Y, et al. Viral protease binds to nucleosomal DNA and cleaves nuclear cGAS that attenuates type Ⅰ interferon[J]. mBio, 2025, 16(4): e0339524. DOI: 10.1128/mbio.03395-24. |
| [7] |
Qiu S, Zhong X, Meng X, et al. Mitochondria-localized cGAS suppresses ferroptosis to promote cancer progression[J]. Cell Res, 2023, 33(4): 299-311. DOI: 10.1038/s41422-023-00788-1.
pmid: 36864172 |
| [8] | Xia L, Yan X, Zhang H. Mitochondrial DNA-activated cGAS-STING pathway in cancer: mechanisms and therapeutic implications[J]. Biochim Biophys Acta Rev Cancer, 2025, 1880( 1): 189249. DOI: 10.1016/j.bbcan.2024.189249. |
| [9] |
Della Corte CM, Byers LA. Evading the STING: LKB1 loss leads to STING silencing and immune escape in KRAS-mutant lung cancers[J]. Cancer Discov, 2019, 9(1): 16-18. DOI: 10.1158/2159-8290.Cd-18-1286.
pmid: 30626603 |
| [10] | Wang F, Jiang C, Hui HX, et al. cGAS regulates metabolic reprogramming independently of sting pathway in colorectal cancer[J]. Exp Cell Res, 2024, 443(1): 114316. DOI: 10.1016/j.yexcr.2024.114316. |
| [11] | Song JX, Villagomes D, Zhao H, et al. cGAS in nucleus: the link between immune response and DNA damage repair[J]. Front Immunol, 2022, 13: 1076784. DOI: 10.3389/fimmu.2022.1076784. |
| [12] | Liu X, Zheng W, Zhang L, et al. Arginine methylation-dependent cGAS stability promotes non-small cell lung cancer cell proliferation[J]. Cancer Lett, 2024, 586: 216707. DOI: 10.1016/j.canlet.2024.216707. |
| [13] |
Qian F, Xu H, Zhang Y, et al. Methionine deprivation inhibits glioma growth through downregulation of CTSL[J]. Am J Cancer Res, 2022, 12(11): 5004-5018.
pmid: 36504894 |
| [14] |
Wei F, Locasale JW. Methionine restriction and antitumor immunity[J]. Trends Cancer, 2023, 9(9): 705-706. DOI: 10.1016/j.trecan.2023.07.008.
pmid: 37517954 |
| [15] |
Xue A, Shang Y, Jiao P, et al. Increased activation of cGAS-STING pathway enhances radiosensitivity of non-small cell lung cancer cells[J]. Thorac Cancer, 2022, 13(9): 1361-1368. DOI: 10.1111/1759-7714.14400.
pmid: 35429143 |
| [16] | Bao Y, Pan Z, Zhao L, et al. BIBR1532 combined with radiotherapy induces ferroptosis in NSCLC cells and activates cGAS-STING pathway to promote anti-tumor immunity[J]. J Transl Med, 2024, 22(1): 519. DOI: 10.1186/s12967-024-05331-3. |
| [17] | Fu C, Yang C, Ni C, et al. Echinococcus granulosus cyst fluid inhibits the type Ⅰ interferon response by promoting ROS in macrophages[J]. Acta Trop, 2024, 250: 107101. DOI: 10.1016/j.actatropica.2023.107101. |
| [18] | Gan Y, Li X, Han S, et al. The cGAS/sting pathway: a novel target for cancer therapy[J]. Front Immunol, 2022, 12: 795401. DOI: 10.3389/fimmu.2021.795401. |
| [19] | Akhiani AA, Martner A. Role of phosphoinositide 3-kinase in regulation of NOX-derived reactive oxygen species in cancer[J]. Antioxidants (Basel), 2022, 12(1): 67. DOI: 10.3390/antiox12010067. |
| [20] | Liu WJ, Wang L, Zhou FM, et al. Elevated NOX4 promotes tumorigenesis and acquired EGFR-TKIs resistance via enhancing IL-8/PD-L1 signaling in NSCLC[J]. Drug Resist Updat, 2023, 70: 100987. DOI: 10.1016/j.drup.2023.100987. |
| [21] | 刘小洁, 黄俊星. NADPH氧化酶2在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(10): 618-621. DOI: 10.3760/cma.j.cn371439-20230428-00117. |
| [22] | Lin Z, Liu Y, Lin P, et al. Clinical significance of sting expression and methylation in lung adenocarcinoma based on bioinformatics analysis[J]. Sci Rep, 2022, 12(1): 13951. DOI: 10.1038/s41598-022-18278-6. |
| [23] | Nakajima S, Kaneta A, Okayama H, et al. The impact of tumor cell-intrinsic expression of cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) on the infiltration of CD8+ T cells and clinical outcomes in mismatch repair proficient/microsatellite stable colorectal cancer[J]. Cancers (Basel), 2023, 15(10): 2826. DOI: 10.3390/cancers15102826. |
| [24] | Liu Y, Gong L, Feng J, et al. Correction: Co-delivery of axitinib and PD-L1 siRNA for the synergism of vascular normalization and immune checkpoint inhibition to boost anticancer immunity[J]. J Nanobiotechnology, 2025, 23(1): 461. DOI: 10.1186/s12951-025-03532-6. |
| [25] |
Lemos H, Mohamed E, Huang L, et al. Sting promotes the growth of tumors characterized by low antigenicity via IDO activation[J]. Cancer Res, 2016, 76(8): 2076-2081. DOI: 10.1158/0008-5472.Can-15-1456.
pmid: 26964621 |
| [26] | Hu J, Sánchez-Rivera FJ, Wang Z, et al. STING inhibits the reactivation of dormant metastasis in lung adenocarcinoma[J]. Nature, 2023, 616(7958): 806-813. DOI: 10.1038/s41586-023-05880-5. |
| [27] | Bakhoum SF, Ngo B, Laughney AM, et al. Chromosomal instability drives metastasis through a cytosolic DNA response[J]. Nature, 2018, 553(7689): 467-472. DOI: 10.1038/nature25432. |
| [28] | Gao Y, Li Y, Lin Z, et al. Ataxia telangiectasia mutated kinase inhibition promotes irradiation‐induced PD‐L1 expression in tumour‐associated macrophages through IFN‐Ⅰ /JAK signalling pathway[J]. Immunology, 2022, 168(2): 346-361. DOI: 10.1111/imm.13602. |
| [29] |
Li X, Wenes M, Romero P, et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy[J]. Nat Rev Clin Oncol, 2019, 16(7): 425-441. DOI: 10.1038/s41571-019-0203-7.
pmid: 30914826 |
| [30] | Odarenko KV, Zenkova MA, Markov AV. The nexus of inflammation-induced epithelial-mesenchymal transition and lung cancer progression: a roadmap to pentacyclic triterpenoid-based therapies[J]. Int J Mol Sci, 2023, 24(24): 17325. DOI: 10.3390/ijms242417325. |
| [31] | Chen Q, Boire A, Jin X, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer[J]. Nature, 2016, 533(7604): 493-498. DOI: 10.1038/nature18268. |
| [32] | Yang Z, Yang L, Zhang J, et al. AS602801 treatment suppresses breast cancer metastasis to the brain by interfering with gap-junction communication by regulating Cx43 expression[J]. Drug Dev Res, 2024, 85(1): e22124. DOI: 10.1002/ddr.22124. |
| [33] | Filderman JN, Taylor JL, Wang J, et al. Antagonism of regulatory ISGs enhances the anti-melanoma efficacy of sting agonists[J]. Front Immunol, 2024, 15: 1334769. DOI: 10.3389/fimmu.2024.1334769. |
| [34] | Luo J, Pang S, Hui Z, et al. Blocking tim-3 enhances the anti-tumor immunity of sting agonist ADU-S100 by unleashing CD4+ T cells through regulating type 2 conventional dendritic cells[J]. Theranostics, 2023, 13(14): 4836-4857. DOI: 10.7150/thno.86792. |
| [35] | Aldhubiab B, Almuqbil RM, Nair AB. Harnessing the power of nanocarriers to exploit the tumor microenvironment for enhanced cancer therapy[J]. Pharmaceuticals (Basel), 2025, 18(5): 746. DOI: 10.3390/ph18050746. |
| [36] | Wang Y, Li S, Hu M, et al. Universal sting mimic boosts antitumour immunity via preferential activation of tumour control signalling pathways[J]. Nat Nanotechnol, 2024, 19(6): 856-866. DOI: 10.1038/s41565-024-01624-2. |
| [37] | Zhou S, Sun Y, Wang K, et al. Polyvinylpyrrolidone-polydatin nanoparticles protect against oxaliplatin induced intestinal toxicity in vitro and in vivo[J]. Food Chem Toxicol, 2024, 184: 114427. DOI: 10.1016/j.fct.2023.114427. |
| [38] | Han D, Zhang J, Bao Y, et al. Anlotinib enhances the antitumor immunity of radiotherapy by activating cGAS/sting in non-small cell lung cancer[J]. Cell Death Discov, 2022, 8(1): 468. DOI: 10. 1038/s41420-022-01256-2. |
| [39] | Wang C, Lin X, Guan S, et al. Dihydroartemisinin attenuates radiation-induced lung injury by inhibiting the cGAS/Sting/NF-κB signaling pathway[J]. Drug Dev Res, 2025, 86(3): e70090. DOI: 10.1002/ddr.70090. |
| [40] | Song H, Chen L, Pan X, et al. Targeting tumor monocyte-intrinsic PD-L1 by rewiring sting signaling and enhancing sting agonist therapy[J]. Cancer Cell, 2025, 43(3): 503-518.e10. DOI: 10.1016/j.ccell.2025.02.014. |
| [41] | Xu N, Palmer DC, Robeson AC, et al. Sting agonist promotes CAR T cell trafficking and persistence in breast cancer[J]. J Exp Med, 2021, 218(2): e20200844. DOI: 10.1084/jem.20200844. |
| [42] | Li Y, Wu X, Fang D, et al. Informing immunotherapy with multiomics driven machine learning[J]. NPJ Digit Med, 2024, 7(1): 67. DOI: 10.1038/s41746-024-01043-6. |
| [43] | Ding Y, Wang D, Yan D, et al. Harnessing single-cell and multiomics insights: sting pathway-based predictive signature for immunotherapy response in lung adenocarcinoma[J]. Front Immunol, 2025, 16: 1575084. DOI: 10.3389/fimmu.2025.1575084. |
| [44] | Xu Y, Xiong Y. Targeting sting signaling for the optimal cancer immunotherapy[J]. Front Immunol, 2024, 15: 1482738. DOI: 10.3389/fimmu.2024.1482738. |
| [1] | 刘美, 胡玉崇, 李凤桐, 朝乐门, 柳檬, 亢琳琳. SHCBP1在恶性肿瘤中的作用机制及临床研究进展[J]. 国际肿瘤学杂志, 2025, 52(9): 583-586. |
| [2] | 梁茁, 王永鹏. 罕见高级别子宫内膜间质肉瘤1例[J]. 国际肿瘤学杂志, 2025, 52(9): 603-605. |
| [3] | 宋美娇, 张锡泉, 沈庆林. 原发灶不明的转移性癌1例并文献复习[J]. 国际肿瘤学杂志, 2025, 52(9): 606-608. |
| [4] | 中国研究型医院学会放射肿瘤学专业委员会, 河北省数理医学学会, 天津市精准医疗学会. 初诊肺癌合并阻塞性肺炎临床诊疗专家共识[J]. 国际肿瘤学杂志, 2025, 52(8): 484-494. |
| [5] | 赵芳, 姜国荣, 史淑月, 肖剑, 马少林, 李润浦. 阿特珠单抗联合安罗替尼治疗晚期非小细胞肺癌疗效观察[J]. 国际肿瘤学杂志, 2025, 52(8): 495-501. |
| [6] | 张百红, 岳红云. 靶向肿瘤转移的新策略[J]. 国际肿瘤学杂志, 2025, 52(8): 528-531. |
| [7] | 吴鑫, 任海朋. KRASG12C抑制剂在晚期结直肠癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(8): 538-542. |
| [8] | 刘琦, 曲国斌, 朱健, 吴凡. 双能CT虚拟平扫图像代替真实平扫图像在光子与质子放疗剂量计算中的可行性研究[J]. 国际肿瘤学杂志, 2025, 52(7): 401-408. |
| [9] | 张露莹, 梁嘉欣, 赵可雷, 袁晓晗, 刘亮博, 路平, 张桂芳, 张敏. 驱动基因阴性晚期NSCLC一线免疫及其联合治疗进展后不同二线治疗策略疗效的真实世界研究[J]. 国际肿瘤学杂志, 2025, 52(7): 419-425. |
| [10] | 朱健. 肿瘤质子放疗剂量学特点序言[J]. 国际肿瘤学杂志, 2025, 52(7): 432-433. |
| [11] | 吴仕章, 胡漫, 戴天缘, 李成强, 陶城, 段敬豪, 陈进琥, 白曈, 孔甜, 朱健. 全中枢神经系统肿瘤1例质子放疗剂量学特点分析[J]. 国际肿瘤学杂志, 2025, 52(7): 434-440. |
| [12] | 徐渐, 段敬豪, 刘庆增, 朱健. 脊索瘤质子放疗中能谱CT参数与MRI ADC变化的相关性研究[J]. 国际肿瘤学杂志, 2025, 52(7): 441-447. |
| [13] | 李成强, 王云刚, 余以珊, 吴仕章, 陶城, 马星民, 戴天缘, 段敬豪, 陈进琥, 白曈, 朱健. 乳腺癌4例质子放疗剂量学特点分析[J]. 国际肿瘤学杂志, 2025, 52(7): 448-454. |
| [14] | 段敬豪, 岳金波, 陶城, 吴仕章, 李成强, 戴天缘, 陈进琥, 白曈, 朱健. 腹盆部肿瘤3例质子放疗剂量学特点分析[J]. 国际肿瘤学杂志, 2025, 52(7): 455-461. |
| [15] | 张彦萍, 薛金才, 辛元春, 刘勤江, 董方. 儿童及青少年鼻咽癌的研究进展[J]. 国际肿瘤学杂志, 2025, 52(6): 337-342. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||