国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (7): 390-399.doi: 10.3760/cma.j.cn371439-20220429-00076

• 论著 • 上一篇    下一篇

基于非靶标代谢组学的肺腺癌软脑膜转移患者脑脊液代谢特征研究

林永娟, 李会颖, 尹震宇, 郭爱斌, 谢宇()   

  1. 南京大学医学院附属鼓楼医院老年肿瘤科,南京 210008
  • 收稿日期:2022-04-29 修回日期:2022-06-14 出版日期:2022-07-08 发布日期:2022-09-19
  • 通讯作者: 谢宇 E-mail:xieyu2101@163.com
  • 基金资助:
    南京市医学重点科技发展项目(ZKX18014);江苏省干部保健科研课题(BJ19001);江苏省干部保健科研课题(BJ21002);希思科-豪森肿瘤研究基金(Y-HS2019-5)

Investigation of cerebrospinal fluid metabolites in patients with leptomeningeal metastases from lung adenocarcinoma based on untargeted metabolomics

Lin Yongjuan, Li Huiying, Yin Zhenyu, Guo Aibin, Xie Yu()   

  1. Department of Geriatric Oncology, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing 210008, China
  • Received:2022-04-29 Revised:2022-06-14 Online:2022-07-08 Published:2022-09-19
  • Contact: Xie Yu E-mail:xieyu2101@163.com
  • Supported by:
    Medical Key Science and Technology Development Project of Nanjing(ZKX18014);Cadre Health Care Project of Jiangsu Province(BJ19001);Cadre Health Care Project of Jiangsu Province(BJ21002);Cancer Research Funding of CSCO-Hausen(Y-HS2019-5)

摘要:

目的 分析脑脊液中代谢标志物在晚期肺腺癌软脑膜转移(LM)中的诊断价值。方法 收集2019年12月至2021年12月于南京大学医学院附属鼓楼医院就诊的肺腺癌LM患者脑脊液样本46例(LM组),另外选取同期神经系统良性疾病患者的脑脊液样本48例(对照组),采用高效液相色谱-质谱技术对脑脊液进行代谢组学分析,应用主成分分析(PCA)和正交偏最小二乘判别分析法(OPLS-DA)进行建模,采用多标准评价体系寻找两组间差异性代谢产物,并利用受试者工作特征(ROC)曲线、通路富集分析等方法,筛选与肺腺癌LM发病相关的代谢物及其通路。结果 LM组与对照组间的年龄(Z=-0.41,P=0.210)、性别(χ2=1.19,P=0.275)、吸烟史(χ2=2.86,P=0.091)、Karnofsky功能状态评分(χ2=0.65,P=0.419)及颅内压增高比例(χ2=0.65,P=0.419)差异均无统计学意义。PCA模型(正离子与负离子模式下,R2X分别为0.608和0.583,Q2分别为0.462和0.513)和OPLS-DA模型(正离子与负离子模式下,R2Y分别为0.967和0.889,Q2分别为0.959和0.852)显示整体数据质量良好,具有较好的解释率和预测率,对数据进行200次重采集验证,不存在过度拟合现象。两组人群代谢轮廓有显著差别,应用多标准评价体系共筛选出30个内源性差异性代谢物,通过ROC曲线分析确定了曲线下面积(AUC)较大的6种潜在的生物标志物,包括酪氨酸(AUC=0.967,95%CI为0.906~1.000)、苯丙氨酸(AUC=0.992,95%CI为0.973~1.000)、丙酮酸(AUC=0.976,95%CI为0.935~1.000)、色氨酸(AUC=0.935,95%CI为0.880~0.973)、葡萄糖(AUC=0.932,95%CI为0.880~0.975)、一磷酸腺苷(AUC=0.993,95%CI为0.987~1.000)。将筛选的30种差异性代谢产物进行代谢通路富集分析,匹配到20条相关的代谢通路,其中最可能引起代谢产物变化的4条代谢通路为:糖酵解及糖代谢合成,丙酮酸代谢,苯丙氨酸代谢,苯丙氨酸、酪氨酸和色氨酸生物合成。结论 非靶向代谢组学可有效筛查肺腺癌LM患者特异的脑脊液代谢物,6种潜在的代谢物如酪氨酸、苯丙氨酸、丙酮酸、色氨酸、一磷酸腺苷、葡萄糖及其代谢通路可能参与肺腺癌LM的发病过程。

关键词: 代谢组学, 肺腺癌, 软脑膜转移, 脑脊液

Abstract:

Objective To analyze the diagnostic value of metabolic makers in cerebrospinal fluid in advanced lung adenocarcinoma patients with leptomeningeal metastases (LM). Methods A total of 46 cerebrospinal fluid samples (LM group) from lung adenocarcinoma patients with LM admitted to Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School from December 2019 to December 2021 were collected, and 48 cerebrospinal fluid samples (control group) from patients with benign neurological diseases during the same period were collected. Metabolomics analysis of cerebrospinal fluid was carried out by high-performance liquid chromatography-mass spectrometry. Principle component analysis (PCA) and orthogonal to partial least squares discriminant analysis (OPLS-DA) were used for modeling. Multi-criteria assessment was used to identify the different metabolites between the two groups. Receiver operating characteristic (ROC) curve, pathway enrichment analysis and other methods were used to screen metabolites and pathways related to LM from lung adenocarcinoma. Results There were no statistically significant differences in the proportions of age (Z=-0.41, P=0.210), gender (χ2=1.19, P=0.275), history of smoking (χ2=2.86, P=0.091), Karnofsky performance status score (χ2=0.65, P=0.419) and increased intracranial pressure (χ2=0.65, P=0.419) between the LM group and control group. The models of PCA (R2X was 0.608 and 0.583, Q2 was 0.462 and 0.513 in electrospray ion positive and negative modes, respectively) and OPLS-DA (R2Y was 0.967 and 0.889, Q2 was 0.959 and 0.852 in electrospray ion positive and negative modes, respectively) showed that the overall data quality was good. Meanwhile, the model interpretation rate and prediction rate were effective. The permutation tests duplicated for 200 times and showed no over-fitting of the established model. The metabolic profiles of the two groups were significantly different. A total of 30 endogenously differential metabolites were screened by using multi-criteria assessment. Six potential biomarkers with larger area under the curve (AUC) were identified through ROC curve analysis, including tyrosine (AUC=0.967, 95%CI: 0.906-1.000), phenylalanine (AUC=0.992, 95%CI: 0.973-1.000), pyruvate (AUC=0.976, 95%CI: 0.935-1.000), tryptophan (AUC=0.935, 95%CI: 0.880-0.973), glucose (AUC=0.932, 95%CI: 0.880-0.975) and adenosine monophosphate (AUC=0.993, 95%CI: 0.987-1.000). The 30 selected differential metabolites were enriched and analyzed for metabolic pathways, and 20 relevant metabolic pathways were matched. Among them, the four metabolic pathways most likely to cause changes in metabolites were glycolysis and glucose metabolic synthesis, pyruvate metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis. Conclusion Untargeted metabolomics analysis can effectively screen specific cerebrospinal fluid metabolites in lung adenocarcinoma patients with LM. Six potential metabolites such as tyrosine, phenylalanine, pyruvate, tryptophan, adenosine monophosphate, glucose and their metabolic pathways may be involved in the pathogenesis of LM from lung adenocarcinoma.

Key words: Metabolomics, Lung adenocarcinoma, Leptomeningeal metastases, Cerebrospinal fluid