
国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (2): 106-110.doi: 10.3760/cma.j.cn371439-20210607-00017
收稿日期:2021-06-07
									
				
											修回日期:2021-12-15
									
				
									
				
											出版日期:2022-02-08
									
				
											发布日期:2022-03-11
									
			通讯作者:
					金风
											E-mail:jinf8865@yeah.net
												基金资助:
        
               		Xu Lu1, Long Jinhua2, Jin Feng2(
), Wu Weili2
			  
			
			
			
                
        
    
Received:2021-06-07
									
				
											Revised:2021-12-15
									
				
									
				
											Online:2022-02-08
									
				
											Published:2022-03-11
									
			Contact:
					Jin Feng   
											E-mail:jinf8865@yeah.net
												Supported by:摘要:
肿瘤免疫原性细胞死亡是调节性细胞死亡的一种类型,由包括化疗药物、放疗、溶瘤病毒、纳米载体药物和光动力在内的应激压力驱动,可以诱导针对肿瘤死亡细胞抗原的特异性免疫应答,对其深入研究可为抗肿瘤免疫和肿瘤的临床免疫治疗提供理论依据和新的思路。
徐露, 龙金华, 金风, 吴伟莉. 肿瘤免疫原性细胞死亡相关分子表达的临床意义[J]. 国际肿瘤学杂志, 2022, 49(2): 106-110.
Xu Lu, Long Jinhua, Jin Feng, Wu Weili. Clinical significance of expression of tumor immunogenic cell death related molecules[J]. Journal of International Oncology, 2022, 49(2): 106-110.
| [1] |  
											  Ozpiskin OM, Zhang L, Li JJ. Immune targets in the tumor microenvironment treated by radiotherapy[J]. Theranostics, 2019, 9(5): 1215-1231. DOI: 10.7150/thno.32648. 
											 												 doi: 10.7150/thno.32648 pmid: 30867826  | 
										
| [2] |  
											  Aliru ML, Schoenhals JE, Venkatesulu BP, et al. Radiation therapy and immunotherapy: what is the optimal timing or sequencing?[J]. Immunotherapy, 2018, 10(4): 299-316. DOI: 10.2217/imt-2017-0082. 
											 												 doi: 10.2217/imt-2017-0082  | 
										
| [3] |  
											  Grassberger C, Ellsworth SG, Wilks MQ, et al. Assessing the inte-ractions between radiotherapy and antitumour immunity[J]. Nat Rev Clin Oncol, 2019, 16(12): 729-745. DOI: 10.1038/s41571-019-0238-9. 
											 												 doi: 10.1038/s41571-019-0238-9 pmid: 31243334  | 
										
| [4] |  
											  Schaer DA, Geeganage S, Amaladas N, et al. The folate pathway inhibitor pemetrexed pleiotropically enhances effects of cancer immunotherapy[J]. Clin Cancer Res, 2019, 25(23): 7175-7188. DOI: 10.1158/1078-0432.CCR-19-0433. 
											 												 doi: 10.1158/1078-0432.CCR-19-0433 pmid: 31409612  | 
										
| [5] |  
											  Ye W, Gunti S, Allen CT, et al. ASTX660, an antagonist of cIAP1/2 and XIAP, increases antigen processing machinery and can enhance radiation-induced immunogenic cell death in preclinical models of head and neck cancer[J]. Oncoimmunology, 2020, 9(1): 1710398. DOI: 10.1080/2162402X.2019.1710398. 
											 												 doi: 10.1080/2162402X.2019.1710398  | 
										
| [6] |  
											  Rossi A, Pakhomova ON, Mollica PA, et al. Nanosecond pulsed electric fields induce endoplasmic reticulum stress accompanied by immunogenic cell death in murine models of lymphoma and colorectal cancer[J]. Cancers (Basel), 2019, 11(12): 2034. DOI: 10.3390/cancers11122034. 
											 												 doi: 10.3390/cancers11122034  | 
										
| [7] |  
											  Fucikova J, Spisek R, Kroemer G, et al. Calreticulin and cancer[J]. Cell Res, 2021, 31(1): 5-16. DOI: 10.1038/s41422-020-0383-9. 
											 												 doi: 10.1038/s41422-020-0383-9  | 
										
| [8] |  
											  Ahmed A, Tait SWG. Targeting immunogenic cell death in cancer[J]. Mol Oncol, 2020, 14(12): 2994-3006. DOI: 10.1002/1878-0261.12851. 
											 												 doi: 10.1002/1878-0261.12851 pmid: 33179413  | 
										
| [9] |  
											  Sethuraman SN, Singh MP, Patil G, et al. Novel calreticulin-nano-particle in combination with focused ultrasound induces immunogenic cell death in melanoma to enhance antitumor immunity[J]. Theranostics, 2020, 10(8): 3397-3412. DOI: 10.7150/thno.42243. 
											 												 doi: 10.7150/thno.42243 pmid: 32206098  | 
										
| [10] |  
											  Kim SG, Park MY, Kim CH, et al. Modification of CEA with both CRT and TAT PTD induces potent anti-tumor immune responses in RNA-pulsed DC vaccination[J]. Vaccine, 2008, 26(50): 6433-6440. DOI: 10.1016/j.vaccine.2008.08.072. 
											 												 doi: 10.1016/j.vaccine.2008.08.072  | 
										
| [11] |  
											  Truxova I, Kasikova L, Salek C, et al. Calreticulin exposure on malignant blasts correlates with improved natural killer cell-mediated cytotoxicity in acute myeloid leukemia patients[J]. Haematologica, 2020, 105(7): 1868-1878. DOI: 10.3324/haematol.2019.223933. 
											 												 doi: 10.3324/haematol.2019.223933 pmid: 31582537  | 
										
| [12] |  
											  Liu P, Zhao L, Loos F, et al. Immunosuppression by mutated calreticulin released from malignant cells[J]. Mol Cell, 2020, 77(4): 748-760.e9. DOI: 10.1016/j.molcel.2019.11.004. 
											 												 doi: 10.1016/j.molcel.2019.11.004  | 
										
| [13] |  
											  Yanai H, Ban T, Taniguchi T. Essential role of high-mobility group box proteins in nucleic acid-mediated innate immune responses[J]. J Intern Med, 2011, 270(4): 301-308. DOI: 10.1111/j.1365-2796.2011.02433.x. 
											 												 doi: 10.1111/j.1365-2796.2011.02433.x pmid: 21793952  | 
										
| [14] |  
											  Xie Y, Yu N, Chen Y, et al. HMGB1 regulates P-glycoprotein expression in status epilepticus rat brains via the RAGE/NF-κB signaling pathway[J]. Mol Med Rep, 2017, 16(2): 1691-1700. DOI: 10.3892/mmr.2017.6772. 
											 												 doi: 10.3892/mmr.2017.6772  | 
										
| [15] |  
											  Martin SJ. Cell death and inflammation: the case for IL-1 family cytokines as the canonical DAMPs of the immune system[J]. FEBS J, 2016, 283(14): 2599-2615. DOI: 10.1111/febs.13775. 
											 												 doi: 10.1111/febs.13775  | 
										
| [16] |  
											  Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity[J]. EMBO Rep, 2020, 21(4): e49799. DOI: 10.15252/embr.201949799. 
											 												 doi: 10.15252/embr.201949799  | 
										
| [17] |  
											  Rapoport BL, Anderson R. Realizing the clinical potential of immunogenic cell death in cancer chemotherapy and radiotherapy[J]. Int J Mol Sci, 2019, 20(4): 959. DOI: 10.3390/ijms20040959. 
											 												 doi: 10.3390/ijms20040959  | 
										
| [18] |  
											  Zhang Y, Zheng L. Tumor immunotherapy based on tumor-derived heat shock proteins (Review)[J]. Oncol Lett, 2013, 6(6): 1543-1549. DOI: 10.3892/ol.2013.1616. 
											 												 doi: 10.3892/ol.2013.1616  | 
										
| [19] |  
											  Garg AD, Krysko DV, Vandenabeele P, et al. Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin[J]. Cancer Immunol Immunother, 2012, 61(2): 215-221. DOI: 10.1007/s00262-011-1184-2. 
											 												 doi: 10.1007/s00262-011-1184-2  | 
										
| [20] |  
											  Montico B, Nigro A, Casolaro V, et al. Immunogenic apoptosis as a novel tool for anticancer vaccine development[J]. Int J Mol Sci, 2018, 19(2): 594. DOI: 10.3390/ijms19020594. 
											 												 doi: 10.3390/ijms19020594  | 
										
| [21] |  
											  Santos TG, Martins VR, Hajj GNM. Unconventional secretion of heat shock proteins in cancer[J]. Int J Mol Sci, 2017, 18(5): 946. DOI: 10.3390/ijms18050946. 
											 												 doi: 10.3390/ijms18050946  | 
										
| [22] |  
											  杨督, 田同德, 岳文莉. 免疫原性细胞死亡相关分子的表达机制及对免疫的调节[J]. 现代肿瘤医学, 2020, 28(2): 316-320. DOI: 10.3969/j.issn.1672-4992.2020.02.032. 
											 												 doi: 10.3969/j.issn.1672-4992.2020.02.032  | 
										
| [23] |  
											  Exner R, Sachet M, Arnold T, et al. Prognostic value of HMGB1 in early breast cancer patients under neoadjuvant chemotherapy[J]. Cancer Med, 2016, 5(9): 2350-2358. DOI: 10.1002/cam4.827. 
											 												 doi: 10.1002/cam4.827  | 
										
| [24] |  
											  Wang Z, Yang CH, Li L, et al. Tumor-derived HMGB1 induces CD62Ldim neutrophil polarization and promotes lung metastasis in triple-negative breast cancer[J]. Oncogenesis, 2020, 9(9): 82. DOI: 10.1038/s41389-020-00267-x. 
											 												 doi: 10.1038/s41389-020-00267-x  | 
										
| [25] |  
											  Bains SJ, Abrahamsson H, Flatmark K, et al. Immunogenic cell death by neoadjuvant oxaliplatin and radiation protects against metastatic failure in high-risk rectal cancer[J]. Cancer Immunol Immunother, 2020, 69(3): 355-364. DOI: 10.1007/s00262-019-02458-x. 
											 												 doi: 10.1007/s00262-019-02458-x  | 
										
| [26] |  
											  Lau TS, Chan LKY, Man GCW, et al. Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE-depen-dent exocytosis[J]. Cancer Immunol Res, 2020, 8(8): 1099-1111. DOI: 10.1158/2326-6066.CIR-19-0616. 
											 												 doi: 10.1158/2326-6066.CIR-19-0616  | 
										
| [27] |  
											  Solari JIG, Filippi-Chiela E, Pilar ES, et al. Damage-associated molecular patterns (DAMPs) related to immunogenic cell death are differentially triggered by clinically relevant chemotherapeutics in lung adenocarcinoma cells[J]. BMC Cancer, 2020, 20(1): 474. DOI: 10.1186/s12885-020-06964-5. 
											 												 doi: 10.1186/s12885-020-06964-5  | 
										
| [28] |  
											  Flieswasser T, Van Loenhout J, Freire Boullosa L, et al. Clinically relevant chemotherapeutics have the ability to induce immunogenic cell death in non-small cell lung cancer[J]. Cells, 2020, 9(6): 1474. DOI: 10.3390/cells9061474. 
											 												 doi: 10.3390/cells9061474  | 
										
| [29] |  
											  Li C, Sun H, Wei W, et al. Mitoxantrone triggers immunogenic prostate cancer cell death via p53-dependent PERK expression[J]. Cell Oncol (Dordr), 2020, 43(6): 1099-1116. DOI: 10.1007/s13402-020-00544-2. 
											 												 doi: 10.1007/s13402-020-00544-2  | 
										
| [30] |  
											  Asna N, Livoff A, Batash R, et al. Radiation therapy and immunotherapy—a potential combination in cancer treatment[J]. Curr Oncol, 2018, 25(5): e454-e460. DOI: 10.3747/co.25.4002. 
											 												 doi: 10.3747/co.25.4002  | 
										
| [31] |  
											  Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death[J]. Nat Med, 2007, 13(1): 54-61. DOI: 10.1038/nm1523. 
											 												 doi: 10.1038/nm1523  | 
										
| [32] |  
											  Caetano MS, Younes AI, Barsoumian HB, et al. Triple therapy with MerTK and PD1 inhibition plus radiotherapy promotes abscopal antitumor immune responses[J]. Clin Cancer Res, 2019, 25(24): 7576-7584. DOI: 10.1158/1078-0432.CCR-19-0795. 
											 												 doi: 10.1158/1078-0432.CCR-19-0795  | 
										
| [33] |  
											  Yang W, Zhang F, Deng H, et al. Smart nanovesicle-mediated immunogenic cell death through tumor microenvironment modulation for effective photodynamic immunotherapy[J]. ACS Nano, 2020, 14(1): 620-631. DOI: 10.1021/acsnano.9b07212. 
											 												 doi: 10.1021/acsnano.9b07212  | 
										
| [34] |  
											  Kopecka J, Godel M, Dei S, et al. Insights into P-glycoprotein inhibitors: new inducers of immunogenic cell death[J]. Cells, 2020, 9(4): 1033. DOI: 10.3390/cells9041033. 
											 												 doi: 10.3390/cells9041033  | 
										
| [35] |  
											  Phung CD, Nguyen HT, Choi JY, et al. Reprogramming the T cell response to cancer by simultaneous, nanoparticle-mediated PD-L1 inhibition and immunogenic cell death[J]. J Control Release, 2019, 315:126-138. DOI: 10.1016/j.jconrel.2019.10.047. 
											 												 doi: 10.1016/j.jconrel.2019.10.047  | 
										
| [36] |  
											  Wang-Bishop L, Wehbe M, Shae D, et al. Potent STING activation stimulates immunogenic cell death to enhance antitumor immunity in neuroblastoma[J]. J Immunother Cancer, 2020, 8(1): e000282. DOI: 10.1136/jitc-2019-000282. 
											 												 doi: 10.1136/jitc-2019-000282  | 
										
| [37] |  
											  Dai Z, Tang J, Gu Z, et al. Eliciting immunogenic cell death via a unitized nanoinducer[J]. Nano Lett, 2020, 20(9): 6246-6254. DOI: 10.1021/acs.nanolett.0c00713. 
											 												 doi: 10.1021/acs.nanolett.0c00713  | 
										
| [38] |  
											  Wen Y, Chen X, Zhu X, et al. Photothermal-chemotherapy integrated nanoparticles with tumor microenvironment response enhanced the induction of immunogenic cell death for colorectal cancer efficient treatment[J]. ACS Appl Mater Interfaces, 2019, 11(46): 43393-43408. DOI: 10.1021/acsami.9b17137. 
											 												 doi: 10.1021/acsami.9b17137  | 
										
| [39] |  
											  Heshmati Aghda N, Abdulsahib SM, Severson C, et al. Induction of immunogenic cell death of cancer cells through nanoparticle-mediated dual chemotherapy and photothermal therapy[J]. Int J Pharm, 2020, 589:119787. DOI: 10.1016/j.ijpharm.2020.119787. 
											 												 doi: 10.1016/j.ijpharm.2020.119787  | 
										
| [40] |  
											  Turubanova VD, Balalaeva IV, Mishchenko TA, et al. Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine[J]. J Immunother Cancer, 2019, 7(1): 350. DOI: 10.1186/s40425-019-0826-3. 
											 												 doi: 10.1186/s40425-019-0826-3 pmid: 31842994  | 
										
| [41] |  
											  Ma J, Ramachandran M, Jin C, et al. Characterization of virus-mediated immunogenic cancer cell death and the consequences for oncolytic virus-based immunotherapy of cancer[J]. Cell Death Dis, 2020, 11(1): 48. DOI: 10.1038/s41419-020-2236-3. 
											 												 doi: 10.1038/s41419-020-2236-3  | 
										
| [42] |  
											  Wang X, Shao X, Gu L, et al. Targeting STAT3 enhances NDV-induced immunogenic cell death in prostate cancer cells[J]. J Cell Mol Med, 2020, 24(7): 4286-4297. DOI: 10.1111/jcmm.15089. 
											 												 doi: 10.1111/jcmm.15089  | 
										
| [43] |  
											  Voloshin T, Kaynan N, Davidi S, et al. Tumor-treating fields (TTFields) induce immunogenic cell death resulting in enhanced antitumor efficacy when combined with anti-PD-1 therapy[J]. Can-cer Immunol Immunother, 2020, 69(7): 1191-1204. DOI: 10.1007/s00262-020-02534-7. 
											 												 doi: 10.1007/s00262-020-02534-7  | 
										
| [1] | 张艳强, 章阳, 李春华, 张典平, 刘保国, 彭显更. 高迁移率族蛋白B1与乳腺癌[J]. 国际肿瘤学杂志, 2020, 47(5): 297-300. | 
| [2] | 罗聪, 陶宁. 化疗与肿瘤免疫原性细胞死亡[J]. 国际肿瘤学杂志, 2017, 44(5): 369-372. | 
| [3] | 陈刚,庄昉成. 高迁移率族蛋白B1及其在宫颈癌中的作用[J]. 国际肿瘤学杂志, 2017, 44(3): 235-238. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||