国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (1): 33-36.doi: 10.3760/cma.j.cn371439-20221005-00006
收稿日期:
2022-10-05
修回日期:
2022-11-26
出版日期:
2023-01-08
发布日期:
2023-03-16
通讯作者:
李文倩
E-mail:lwq121616@163.com
基金资助:
Sun Qi1, Li Wenqian2(), Xie Youbang2, Zhou Houfa1
Received:
2022-10-05
Revised:
2022-11-26
Online:
2023-01-08
Published:
2023-03-16
Contact:
Li Wenqian
E-mail:lwq121616@163.com
Supported by:
摘要:
化疗作为肿瘤的有效治疗手段,在清除肿瘤细胞的同时,对机体增殖旺盛的细胞尤其是造血细胞也产生明显的杀伤作用,造成化疗后骨髓抑制,影响化疗药物治疗效果及治疗周期。因此,从造血微环境损伤及造血干细胞衰老两方面入手,探讨化疗后骨髓抑制机制,可为肿瘤化疗后骨髓抑制的干预及管理提供新思路及理论支持。
孙琦, 李文倩, 解友邦, 周厚法. 化疗后骨髓抑制机制的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 33-36.
Sun Qi, Li Wenqian, Xie Youbang, Zhou Houfa. Research progress on the mechanism of bone marrow suppression after chemotherapy[J]. Journal of International Oncology, 2023, 50(1): 33-36.
[1] | World Health Organization. Global health estimates 2020:deaths by cause, age, sex, by country and by region, 2000-2019[R]. Geneva, World Health Organization, 2020. |
[2] |
Xiao H, Xiong L, Song X, et al. Angelica sinensis polysaccharides ameliorate stress-induced premature senescence of hematopoietic cell via protecting bone marrow stromal cells from oxidative injuries caused by 5-fluorouracil[J]. Int J Mol Sci, 2017, 18(11): 2265. DOI: 10.3390/ijms18112265.
doi: 10.3390/ijms18112265 |
[3] |
Han J, Xia J, Zhang L, et al. Studies of the effects and mechanisms of ginsenoside Re and Rk3 on myelosuppression induced by cyclophosphamide[J]. J Ginseng Res, 2019, 43(4): 618-624. DOI: 10.1016/j.jgr.2018.07.009.
doi: 10.1016/j.jgr.2018.07.009 |
[4] |
Wei Q, Frenette PS. Niches for hematopoietic stem cells and their progeny[J]. Immunity, 2018, 48(4): 632-648. DOI: 10.1016/j.immuni.2018.03.024.
doi: S1074-7613(18)30122-5 pmid: 29669248 |
[5] |
熊丽溶, 宋小英, 景鹏伟, 等. 5-氟尿嘧啶损伤骨髓基质细胞致造血细胞应激诱导性早衰[J]. 中国实验血液学杂志, 2017, 25(4): 1178-1186. DOI: 10.7534/j.issn.1009-2137.2017.04.038.
doi: 10.7534/j.issn.1009-2137.2017.04.038 |
[6] |
Liu M, Tan H, Zhang X, et al. Hematopoietic effects and mechanisms of Fufang e׳jiao jiang on radiotherapy and chemotherapy-induced myelosuppressed mice[J]. J Ethnopharmacol, 2014, 152(3): 575-584. DOI: 10.1016/j.jep.2014.02.012.
doi: 10.1016/j.jep.2014.02.012 pmid: 24534527 |
[7] |
Li Y, Xue Z, Dong X, et al. Mitochondrial dysfunction and oxidative stress in bone marrow stromal cells induced by daunorubicin leads to DNA damage in hematopoietic cells[J]. Free Radic Biol Med, 2020, 146: 211-221. DOI: 10.1016/j.freeradbiomed.2019.11.007.
doi: 10.1016/j.freeradbiomed.2019.11.007 |
[8] |
Henry E, Souissi-Sahraoui I, Deynoux M, et al. Human hemato-poietic stem/progenitor cells display reactive oxygen species-dependent long-term hematopoietic defects after exposure to low doses of ionizing radiations[J]. Haematologica, 2020, 105(8): 2044-2055. DOI: 10.3324/haematol.2019.226936.
doi: 10.3324/haematol.2019.226936 pmid: 31780635 |
[9] |
Gill JG, Piskounova E, Morrison SJ, et al. Cancer, oxidative stress, and metastasis[J]. Cold Spring Harb Symp Quant Biol, 2016, 81: 163-175. DOI: 10.1101/sqb.2016.81.030791.
doi: 10.1101/sqb.2016.81.030791 pmid: 28082378 |
[10] |
Xu Y, Zeng F, Jiang J, et al. The hematopoietic function of medicinal wine Maoji Jiu revealed in blood deficiency model rats[J]. Evid Based Complement Alternat Med, 2022, 2022: 1025504. DOI: 10.1155/2022/1025504.
doi: 10.1155/2022/1025504 |
[11] |
李艺辉, 刘喆, 李欢, 等. 化疗引起的骨髓基质细胞损伤对正常造血细胞的影响[J]. 中国实验血液学杂志, 2019, 27(1): 233-238. DOI: 10.7534/j.issn.1009-2137.2019.01.038.
doi: 10.7534/j.issn.1009-2137.2019.01.038 |
[12] |
中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会. 同步放化疗期间应用聚乙二醇化重组人粒细胞刺激因子中国专家共识(2020版)[J]. 国际肿瘤学杂志, 2021, 48(1): 11-17. DOI: 10.3760/cma.j.cn371439-20201126-00002.
doi: 10.3760/cma.j.cn371439-20201126-00002 |
[13] |
Martínez-Zamudio RI, Robinson L, Roux PF, et al. SnapShot: cellular senescence pathways[J]. Cell, 2017, 170(4): 816-816.e1. DOI: 10.1016/j.cell.2017.07.049.
doi: S0092-8674(17)30886-3 pmid: 28802049 |
[14] |
Lucas D, Scheiermann C, Chow A, et al. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration[J]. Nat Med, 2013, 19(6): 695-703. DOI: 10.1038/nm.3155.
doi: 10.1038/nm.3155 pmid: 23644514 |
[15] |
Maryanovich M, Zahalka AH, Pierce H, et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche[J]. Nat Med, 2018, 24(6): 782-791. DOI: 10.1038/s41591-018-0030-x.
doi: 10.1038/s41591-018-0030-x pmid: 29736022 |
[16] |
Park MH, Jung IK, Min WK, et al. Neuropeptide Y improves cisplatin-induced bone marrow dysfunction without blocking chemotherapeutic efficacy in a cancer mouse model[J]. BMB Rep, 2017, 50(8): 417-422. DOI: 10.5483/bmbrep.2017.50.8.099.
doi: 10.5483/bmbrep.2017.50.8.099 pmid: 28712386 |
[17] |
Park MH, Jin HK, Min WK, et al. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow[J]. EMBO J, 2015, 34(12): 1648-1660. DOI: 10.15252/embj.201490174.
doi: 10.15252/embj.201490174 pmid: 25916827 |
[18] |
Park MH, Baek B, Jin HK, et al. Novel peptides derived from neuropeptide Y prevent chemotherapy-induced bone marrow damage by regulating hematopoietic stem cell microenvironment[J]. Anim Cells Syst (Seoul), 2018, 22(5): 281-288. DOI: 10.1080/19768354.2018.1517826.
doi: 10.1080/19768354.2018.1517826 |
[19] |
Lee S, Lee JS. Cellular senescence: a promising strategy for cancer therapy[J]. BMB Rep, 2019, 52(1): 35-41. DOI: 10.5483/BMBRep.2019.52.1.294.
doi: 10.5483/BMBRep.2019.52.1.294 pmid: 30526771 |
[20] |
Montazersaheb S, Ehsani A, Fathi E, et al. Cellular and molecular mechanisms involved in hematopoietic stem cell aging as a clinical prospect[J]. Oxid Med Cell Longev, 2022, 2022: 2713483. DOI: 10.1155/2022/2713483.
doi: 10.1155/2022/2713483 |
[21] |
Shao L, Wang Y, Chang J, et al. Hematopoietic stem cell senescence and cancer therapy-induced long-term bone marrow injury[J]. Transl Cancer Res, 2013, 2(5): 397-411. DOI: 10.3978/j.issn.2218-676X.2013.07.03.
doi: 10.3978/j.issn.2218-676X.2013.07.03 pmid: 24605290 |
[22] |
Sorimachi Y, Karigane D, Ootomo Y, et al. p38α plays differential roles in hematopoietic stem cell activity dependent on aging contexts[J]. J Biol Chem, 2021, 296: 100563. DOI: 10.1016/j.jbc.2021.100563.
doi: 10.1016/j.jbc.2021.100563 |
[23] |
Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence[J]. Trends Cell Biol, 2018, 28(6): 436-453. DOI: 10.1016/j.tcb.2018.02.001.
doi: S0962-8924(18)30020-5 pmid: 29477613 |
[24] |
Capuozzo M, Santorsola M, Bocchetti M, et al. p53: from fundamental biology to clinical applications in cancer[J]. Biology (Basel), 2022, 11(9): 1325. DOI: 10.3390/biology11091325.
doi: 10.3390/biology11091325 |
[25] |
Herranz N, Gil J. Mechanisms and functions of cellular senescence[J]. J Clin Invest, 2018, 128(4): 1238-1246. DOI: 10.1172/JCI95148.
doi: 10.1172/JCI95148 pmid: 29608137 |
[26] |
Si S, Nakajima-Takagi Y, Iga T, et al. Hematopoietic insults damage bone marrow niche by activating p53 in vascular endothelial cells[J]. Exp Hematol, 2018, 63: 41-51.e1. DOI: 10.1016/j.exphem.2018.04.006.
doi: S0301-472X(18)30213-3 pmid: 29709619 |
[27] |
Zheng S, Koh XY, Goh HC, et al. Inhibiting p53 acetylation reduces cancer chemotoxicity[J]. Cancer Res, 2017, 77(16): 4342-4354. DOI: 10.1158/0008-5472.CAN-17-0424.
doi: 10.1158/0008-5472.CAN-17-0424 pmid: 28655792 |
[28] |
Shao L, Luo Y, Zhou D. Hematopoietic stem cell injury induced by ionizing radiation[J]. Antioxid Redox Signal, 2014, 20(9): 1447-1462. DOI: 10.1089/ars.2013.5635.
doi: 10.1089/ars.2013.5635 |
[29] |
Chen Z, Amro EM, Becker F, et al. Cohesin-mediated NF-κB signaling limits hematopoietic stem cell self-renewal in aging and inflammation[J]. J Exp Med, 2019, 216(1): 152-175. DOI: 10.1084/jem.20181505.
doi: 10.1084/jem.20181505 |
[30] |
Zhao J, Zhang L, Lu A, et al. ATM is a key driver of NF-κB-dependent DNA-damage-induced senescence, stem cell dysfunction and aging[J]. Aging (Albany NY), 2020, 12(6): 4688-4710. DOI: 10.18632/aging.102863.
doi: 10.18632/aging.102863 |
[31] |
王晓玲, 黄冬榕, 郑倩倩, 等. “芪归药对”干预NF-κB通路调控骨髓造血干细胞辐射旁效应损伤的机制研究[J]. 时珍国医国药, 2021, 32(5): 1051-1054. DOI: 10.3969/j.issn.1008-0805.2021.05.08.
doi: 10.3969/j.issn.1008-0805.2021.05.08 |
[32] |
He H, Xu P, Zhang X, et al. Aging-induced IL27Ra signaling impairs hematopoietic stem cells[J]. Blood, 2020, 136(2): 183-198. DOI: 10.1182/blood.2019003910.
doi: 10.1182/blood.2019003910 pmid: 32305041 |
[1] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 姚益新, 沈煜霖. 血清SOCS3、TXNIP水平对肝细胞癌TACE治疗预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 217-222. |
[4] | 姜溪, 武永存, 梁艳, 楚丽, 段颖欣, 王力军, 霍俊杰. 派安普利单抗联合化疗对晚期非小细胞肺癌患者血管生成及循环内皮细胞的影响[J]. 国际肿瘤学杂志, 2024, 51(2): 89-94. |
[5] | 安荣, 刘美华, 王佩晨, 王晓慧. Nrf2在卵巢癌中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(8): 493-497. |
[6] | 范珊琳, 汪品秀, 孔飞, 周玉洁, 袁文臻. 胃癌新辅助化疗后肿瘤退缩分级预测因素的研究进展[J]. 国际肿瘤学杂志, 2023, 50(2): 112-116. |
[7] | 岳红云, 张百红. 肿瘤的衰老治疗[J]. 国际肿瘤学杂志, 2023, 50(12): 734-738. |
[8] | 巩合义, 伊艳, 张健, 李宝生. 局部晚期可手术食管癌经新辅助放化疗达临床完全缓解后的处理策略[J]. 国际肿瘤学杂志, 2023, 50(12): 745-750. |
[9] | 吴浦嫄, 祁亮, 王涛, 史敏科, 孙雨薇, 王立峰, 刘宝瑞, 闫婧, 任伟. 基于高频复发区改良临床靶区的术后放疗在食管鳞状细胞癌中的疗效研究[J]. 国际肿瘤学杂志, 2022, 49(8): 464-472. |
[10] | 刘松, 于广计, 王庆东. DEBIRI-TACE联合瑞戈非尼三线以上治疗结直肠癌肝转移的疗效及影响因素分析[J]. 国际肿瘤学杂志, 2022, 49(7): 400-407. |
[11] | 张慎锋, 刘杰, 祝情情, 阚士峰, 孙晋军, 王涛, 邱梅清. 长春瑞滨节拍化疗治疗一线失败后驱动基因阴性晚期老年非小细胞肺癌的疗效和安全性[J]. 国际肿瘤学杂志, 2022, 49(7): 441-443. |
[12] | 杜佳, 李娟, 李钱, 陈姝, 单锦露. 新辅助放化疗联合动脉栓塞灌注治疗局部晚期直肠癌1例[J]. 国际肿瘤学杂志, 2022, 49(6): 383-384. |
[13] | 刘永红, 薛玲博, 白杨, 靳健, 臧春霞, 张博, 李杰. 治疗前全身炎症反应指数对乳腺癌新辅助化疗病理完全缓解的预测价值[J]. 国际肿瘤学杂志, 2022, 49(4): 210-215. |
[14] | 张玉敏, 赵现伟, 何前进, 陈杰能. 超声造影联合血清CXCL8、CXCR2在原发性肝癌经导管动脉化疗栓塞术后疗效评估中的价值分析[J]. 国际肿瘤学杂志, 2022, 49(10): 592-596. |
[15] | 刘晓静, 朱明华, 左思, 孟迪, 毕艳, 王伟, 进淑娟. 不同治疗方式对三阴性乳腺癌预后的影响[J]. 国际肿瘤学杂志, 2022, 49(1): 33-38. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||