
国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (2): 117-120.doi: 10.3760/cma.j.cn371439-20200610-00023
收稿日期:2020-06-10
									
				
											修回日期:2020-06-23
									
				
									
				
											出版日期:2021-02-08
									
				
											发布日期:2021-03-11
									
			通讯作者:
					崔飞伦
											E-mail:pdcuifeilun@163.com
												基金资助:
        
               		Zhang Xiaofei, Hu Jianpeng, Cui Feilun(
)
			  
			
			
			
                
        
    
Received:2020-06-10
									
				
											Revised:2020-06-23
									
				
									
				
											Online:2021-02-08
									
				
											Published:2021-03-11
									
			Contact:
					Cui Feilun   
											E-mail:pdcuifeilun@163.com
												Supported by:摘要:
长非编码RNA(lncRNA)是一类转录本长度超过200个核苷酸、不能编码蛋白质的RNA分子。近年的研究表明,在机体的生理和病理过程中,lncRNA发挥重要作用,参与前列腺癌的发生、发展和转移。深入研究lncRNA在前列腺癌中的作用机制,有望为前列腺癌的诊断及治疗提供新的思路。
张小飞, 胡建鹏, 崔飞伦. 长非编码RNA在前列腺癌中的作用机制[J]. 国际肿瘤学杂志, 2021, 48(2): 117-120.
Zhang Xiaofei, Hu Jianpeng, Cui Feilun. Mechanism of long non-coding RNA in prostate cancer[J]. Journal of International Oncology, 2021, 48(2): 117-120.
| [1] |  
											  Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020,70(1):7-30. DOI: 10.3322/caac.21590. 
											 												 doi: 10.3322/caac.21590 pmid: 31912902  | 
										
| [2] |  
											  Chi Y, Wang D, Wang J, et al. Long non-coding RNA in the pathogenesis of cancers[J]. Cells, 2019,8(9):1015. DOI: 10.3390/cells8091015. 
											 												 doi: 10.3390/cells8091015  | 
										
| [3] |  
											  Cui Z, Ren S, Lu J, et al. The prostate cancer-up-regulated long noncoding RNA PlncRNA-1 modulates apoptosis and proliferation through reciprocal regulation of androgen receptor[J]. Urol Oncol, 2013,31(7):1117-1123. DOI: 10.1016/j.urolonc.2011.11.030. 
											 												 doi: 10.1016/j.urolonc.2011.11.030 pmid: 22264502  | 
										
| [4] |  
											  Yang Q, Cui ZL, Wang Q, et al. PlncRNA-1 induces apoptosis through the Her-2 pathway in prostate cancer cells[J]. Asian J Androl, 2017,19(4):453-457. DOI: 10.4103/1008-682X.178849. 
											 												 doi: 10.4103/1008-682X.178849 pmid: 27232851  | 
										
| [5] |  
											  Ghafouri-Fard S, Esmaeili M, Taheri M. H19 lncRNA: roles in tumorigenesis[J]. Biomed Pharmacother, 2020,123:109774. DOI: 10.1016/j.biopha.2019.109774. 
											 												 doi: 10.1016/j.biopha.2019.109774 pmid: 31855739  | 
										
| [6] |  
											  Zhu M, Chen Q, Liu X, et al. lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI[J]. FEBS J, 2014,281(16):3766-3775. DOI: 10.1111/febs.12902. 
											 												 doi: 10.1111/febs.12902  | 
										
| [7] |  
											  Singh N, Padi SKR, Bearss JJ, et al. PIM protein kinases regulate the level of the long noncoding RNA H19 to control stem cell gene transcription and modulate tumor growth[J]. Mol Oncol, 2020,14(5):974-990. DOI: 10.1002/1878-0261.12662. 
											 												 doi: 10.1002/1878-0261.12662 pmid: 32146726  | 
										
| [8] |  
											  Ren S, Liu Y, Xu W, et al. Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer[J]. J Urol, 2013,190(6):2278-2287. DOI: 10.1016/j.juro.2013.07.001. 
											 												 doi: 10.1016/j.juro.2013.07.001 pmid: 23845456  | 
										
| [9] |  
											  Wang D, Ding L, Wang L, et al. LncRNA MALAT1 enhances oncogenic activities of EZH2 in castration-resistant prostate cancer[J]. Oncotarget, 2015,6(38):41045-41055. DOI: 10.18632/oncotarget.5728. 
											 												 doi: 10.18632/oncotarget.5728 pmid: 26516927  | 
										
| [10] | Wang F, Ren S, Chen R, et al. Development and prospective multicenter evaluation of the long noncoding RNA MALAT-1 as a diagnostic urinary biomarker for prostate cancer[J]. Oncotarget, 2014,5(22):11091-11102. DOI: 10.18632/oncotarget.2691. | 
| [11] |  
											  Jin SJ, Jin MZ, Xia BR, et al. Long non-coding RNA DANCR as an emerging therapeutic target in human cancers[J]. Front Oncol, 2019,9:1225. DOI: 10.3389/fonc.2019.01225. 
											 												 doi: 10.3389/fonc.2019.01225 pmid: 31799189  | 
										
| [12] |  
											  Zhao HF, Zhang ZC, Shi BK, et al. DANCR sponges miR-135a to regulate paclitaxel sensitivity in prostate cancer[J]. Eur Rev Med Pharmacol Sci, 2019,23(16):6849-6857. DOI: 10.26355/eurrev_201908_18724. 
											 												 doi: 10.26355/eurrev_201908_18724 pmid: 31486484  | 
										
| [13] |  
											  Ma Y, Fan B, Ren Z, et al. Long noncoding RNA DANCR contri-butes to docetaxel resistance in prostate cancer through targeting the miR-34a-5p/JAG1 pathway[J]. Onco Targets Ther, 2019,12:5485-5497. DOI: 10.2147/OTT.S197009. 
											 												 doi: 10.2147/OTT.S197009 pmid: 31371987  | 
										
| [14] |  
											  Ji J, Dai X, Yeung SJ, et al. The role of long non-coding RNA GAS5 in cancers[J]. Cancer Manag Res, 2019,11:2729-2737. DOI: 10.2147/CMAR.S189052. 
											 												 doi: 10.2147/CMAR.S189052 pmid: 31114330  | 
										
| [15] |  
											  Xie X, Dai J, Huang X, et al. MicroRNA-145 inhibits proliferation and induces apoptosis in human prostate carcinoma by upregulating long non-coding RNA GAS5[J]. Oncol Lett, 2019,18(2):1043-1048. DOI: 10.3892/ol.2019.10419. 
											 												 doi: 10.3892/ol.2019.10419 pmid: 31423164  | 
										
| [16] |  
											  Yang J, Hao T, Sun J, et al. Long noncoding RNA GAS5 modulates α-Solanine-induced radiosensitivity by negatively regulating miR-18a in human prostate cancer cells[J]. Biomed Pharmacother, 2019,112:108656. DOI: 10.1016/j.biopha.2019.108656. 
											 												 doi: 10.1016/j.biopha.2019.108656 pmid: 30970507  | 
										
| [17] |  
											  Guo C, Qi Y, Qu J, et al. Pathophysiological functions of the lncRNA TUG1[J]. Curr Pharm Des, 2020,26(6):688-700. DOI: 10.2174/1381612826666191227154009. 
											 												 doi: 10.2174/1381612826666191227154009 pmid: 31880241  | 
										
| [18] |  
											  Xu T, Liu CL, Li T, et al. LncRNA TUG1 aggravates the progre-ssion of prostate cancer and predicts the poor prognosis[J]. Eur Rev Med Pharmacol Sci, 2019,23(11):4698-4705. DOI: 10.26355/eurrev_201906_18062. 
											 												 doi: 10.26355/eurrev_201906_18062 pmid: 31210308  | 
										
| [19] |  
											  Yang G, Yin H, Lin F, et al. Long noncoding RNA TUG1 regulates prostate cancer cell proliferation, invasion and migration via the Nrf2 signaling axis[J]. Pathol Res Pract, 2020,216(4):152851. DOI: 10.1016/j.prp.2020.152851. 
											 												 doi: 10.1016/j.prp.2020.152851 pmid: 32057513  | 
										
| [20] |  
											  Pu J, Wei H, Tan C, et al. Long noncoding RNA SNHG14 facilitates hepatocellular carcinoma progression through regulating miR-4673/SOCS1[J]. Am J Transl Res, 2019,11(9):5897-5904. 
											 												 pmid: 31632558  | 
										
| [21] |  
											  Li L, Zhang R, Li SJ. Long noncoding RNA SNHG14 promotes ovarian cancer cell proliferation and metastasis via sponging miR-219a-5p[J]. Eur Rev Med Pharmacol Sci, 2019,23(10):4136-4142. DOI: 10.26355/eurrev_201905_17915. 
											 												 doi: 10.26355/eurrev_201905_17915 pmid: 31173283  | 
										
| [22] |  
											  Ye T, Zhang N, Wu W, et al. SNHG14 promotes the tumorigenesis and metastasis of colorectal cancer through miR-32-5p/SKIL axis[J]. In Vitro Cell Dev Biol Anim, 2019,55(10):812-820. DOI: 10.1007/s11626-019-00398-5. 
											 												 doi: 10.1007/s11626-019-00398-5 pmid: 31471872  | 
										
| [23] |  
											  Xu ZN, Wang ZX, Xu L, et al. Long noncoding RNA SNHG14 exerts oncogenic functions in lung adenocarcinoma through acting as a sponge to miR-613[J]. Eur Rev Med Pharmacol Sci, 2019,23(24):10810-10817. DOI: 10.26355/eurrev_201912_19784. 
											 												 doi: 10.26355/eurrev_201912_19784 pmid: 31858549  | 
										
| [24] |  
											  Liu Z, Yan Y, Cao S, et al. Long non-coding RNA SNHG14 contributes to gastric cancer development through targeting miR-145/SOX9 axis[J]. J Cell Biochem, 2018,119(8):6905-6913. DOI: 10.1002/jcb.26889. 
											 												 doi: 10.1002/jcb.26889 pmid: 29667771  | 
										
| [25] |  
											  Ji N, Wang Y, Bao G, et al. LncRNA SNHG14 promotes the progression of cervical cancer by regulating miR-206/YWHAZ[J]. Pathol Res Pract, 2019,215(4):668-675. DOI: 10.1016/j.prp.2018.12.026. 
											 												 doi: 10.1016/j.prp.2018.12.026 pmid: 30611620  | 
										
| [26] |  
											  Sun B, Ke KB, Liu DF, et al. Long noncoding RNA SNHG14 acts as an oncogene in prostate cancer via targeting miR-613[J]. Eur Rev Med Pharmacol Sci, 2020,24(2):633-638. DOI: 10.26355/eurrev_202001_20039. 
											 												 doi: 10.26355/eurrev_202001_20039 pmid: 32016964  | 
										
| [27] |  
											  Ghafouri-Fard S, Taheri M. Maternally expressed gene 3 (MEG3): a tumor suppressor long noncoding RNA[J]. Biomed Pharmacother, 2019,118:109129. DOI: 10.1016/j.biopha.2019.109129. 
											 												 doi: 10.1016/j.biopha.2019.109129 pmid: 31326791  | 
										
| [28] |  
											  Li J, Zi Y, Wang W, et al. Long noncoding RNA MEG3 inhibits cell proliferation and metastasis in chronic myeloid leukemia via targeting miR-184[J]. Oncol Res, 2018,26(2):297-305. DOI: 10.3727/096504017X14980882803151. 
											 												 doi: 10.3727/096504017X14980882803151 pmid: 28653609  | 
										
| [29] |  
											  Wu M, Huang Y, Chen T, et al. LncRNA MEG3 inhibits the progression of prostate cancer by modulating miR-9-5p/QKI-5 axis[J]. J Cell Mol Med, 2019,23(1):29-38. DOI: 10.1111/jcmm.13658. 
											 												 doi: 10.1111/jcmm.13658 pmid: 30565858  | 
										
| [30] |  
											  Luo G, Wang M, Wu X, et al. Long non-coding RNA MEG3 inhi-bits cell proliferation and induces apoptosis in prostate cancer[J]. Cell Physiol Biochem, 2015,37(6):2209-2220. DOI: 10.1159/000438577. 
											 												 doi: 10.1159/000438577 pmid: 26610246  | 
										
| [31] |  
											  Zhang WY, Liu YJ, He Y, et al. Down-regulation of long non-coding RNA ANRIL inhibits the proliferation, migration and invasion of cervical cancer cells[J]. Cancer Biomark, 2018,23(2):243-253. DOI: 10.3233/CBM-181467. 
											 												 doi: 10.3233/CBM-181467 pmid: 30198868  | 
										
| [32] |  
											  Zhang JJ, Wang DD, Du CX, et al. Long noncoding RNA ANRIL promotes cervical cancer development by acting as a sponge of miR-186[J]. Oncol Res, 2018,26(3):345-352. DOI: 10.3727/096504017X14953948675449. 
											 												 doi: 10.3727/096504017X14953948675449 pmid: 28550682  | 
										
| [33] |  
											  Yu G, Liu G, Yuan D, et al. Long non-coding RNA ANRIL is associated with a poor prognosis of osteosarcoma and promotes tumorige-nesis via PI3K/Akt pathway[J]. J Bone Oncol, 2018,11:51-55. DOI: 10.1016/j.jbo.2018.02.002. 
											 												 doi: 10.1016/j.jbo.2018.02.002 pmid: 29520337  | 
										
| [34] |  
											  Deng W, Zhang Y, Cai J, et al. LncRNA-ANRIL promotes gastric cancer progression by enhancing NF-κB signaling[J]. Exp Biol Med (Maywood), 2019,244(12):953-959. DOI: 10.1177/1535370219860207. 
											 												 doi: 10.1177/1535370219860207  | 
										
| [35] |  
											  Ma J, Li T, Han X, et al. Knockdown of lncRNA ANRIL suppre-sses cell proliferation, metastasis, and invasion via regulating miR-122-5p expression in hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2018,144(2):205-214. DOI: 10.1007/s00432-017-2543-y. 
											 												 doi: 10.1007/s00432-017-2543-y pmid: 29127494  | 
										
| [36] |  
											  Zhao B, Lu YL, Yang Y, et al. Overexpression of lncRNA ANRIL promoted the proliferation and migration of prostate cancer cells via regulating let-7a/TGF-β1/ Smad signaling pathway[J]. Cancer Biomark, 2018,21(3):613-620. DOI: 10.3233/CBM-170683. 
											 												 doi: 10.3233/CBM-170683 pmid: 29278879  | 
										
| [1] | 赵鑫, 范学武, 田龙, 胡逸民. 三维超声在前列腺癌图像引导放疗中的应用与评价研究[J]. 国际肿瘤学杂志, 2024, 51(1): 43-49. | 
| [2] | 金明, 甄书青, 王彦巧, 申红霞, 张爱民, 回丽妹. 丙泊酚对前列腺癌DU145细胞恶性生物学行为的影响及其机制[J]. 国际肿瘤学杂志, 2022, 49(8): 453-458. | 
| [3] | 张永丽, 张若佳, 范焕彩, 葛鲁娜, 王林. TXNDC5-Prx2途径对前列腺癌细胞耐药性的调控[J]. 国际肿瘤学杂志, 2021, 48(8): 473-478. | 
| [4] | 杜霄, 周菊英. 局限性前列腺癌的立体定向放疗[J]. 国际肿瘤学杂志, 2021, 48(5): 313-316. | 
| [5] | 刘振华. 前列腺癌治疗的最新进展:肿瘤精准治疗时代下转移性去势抵抗性前列腺癌患者的管理[J]. 国际肿瘤学杂志, 2021, 48(11): 702-704. | 
| [6] | 吉春冬, 刘凯, 冯越, 汪飞, 杨军, 薛荣波. PSAMR联合PI-RADS v2评分对高级别前列腺癌的预测价值[J]. 国际肿瘤学杂志, 2020, 47(12): 723-727. | 
| [7] | 张佳伟, 吴建臣. 外泌体在前列腺癌中的应用[J]. 国际肿瘤学杂志, 2020, 47(10): 634-636. | 
| [8] | 徐耀宗, 顾晓, 王飞, 丁雪飞. 雄激素剥脱治疗后前列腺癌发展为去势抵抗性前列腺癌的分子机制[J]. 国际肿瘤学杂志, 2018, 45(8): 506-509. | 
| [9] | 毕泗成,刘浩,张鹏,李喆,买铁军,祝志臻. 血清LCN2与PSA联合检测对前列腺癌的 诊断价值[J]. 国际肿瘤学杂志, 2018, 45(1): 27-. | 
| [10] | 黄耿,姜卫东,毛青,桂定文. 微小RNA-206通过干扰CDK4和GAK的表达对前列腺癌细胞生长的影响[J]. 国际肿瘤学杂志, 2017, 44(7): 485-489. | 
| [11] | 周启东,蒋光亮,徐可. 糖皮质激素受体在泌尿系统恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2017, 44(6): 476-. | 
| [12] | 樊璐璐, 廖成功, 黄建国, 殷航, 钱门龙, 万闹, 卢宁. 化疗前血清胱抑素C对去势抵抗性前列腺癌预后的影响[J]. 国际肿瘤学杂志, 2017, 44(5): 356-360. | 
| [13] | 申骏龙,刘全海,刘莉,南淑良,程永毅,周建成. 改良13点前列腺穿刺活检在前列腺癌 诊断中的应用 [J]. 国际肿瘤学杂志, 2017, 44(12): 907-910. | 
| [14] | 刘维帅,曾亚奇,邵月娟,王昆. 膳食纤维摄入与前列腺癌发生风险关系的Meta分析[J]. 国际肿瘤学杂志, 2016, 43(10): 758-764. | 
| [15] | 马强, 郑君芳, 焦延娜, 高红林, 李德冠, 刘鉴峰, 刘强, 宋娜玲. shRNA靶向干扰NHERF1对PC-3M前列腺癌细胞生物学行为的影响[J]. 国际肿瘤学杂志, 2015, 42(1): 14-17. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||