[1] Xiong H, Yang XY, Han J, et al. Cytokine expression patterns and mesenchymal stem cell karyotypes from the bone marrow microenvironment of patients with myelodysplastic syndromes[J]. Braz J Med Biol Res, 2015, 48(3): 207213. DOI: 10.1590/1414431X20144051.
[2] Bulycheva E, Rauner M, Medyouf H, et al. Myelodysplasia is in the niche: novel concepts and emerging therapies[J]. Leukemia, 2015, 29(2): 259268. DOI: 10.1038/leu.2014.325.
[3] Raaijmakers MH, Mukherjee S, Guo S, et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia[J]. Nature, 2010, 464(7290): 852857. DOI: 10.1038/nature08851.
[4] Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cellscurrent trends and future prospective[J]. Biosci Rep, 2015, 35(2): e00191. DOI: 10.1042/BSR20150025.
[5] Falconi G, Fabiani E, Fianchi L, et al. Impairment of PI3K/AKT and WNT/betacatenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes[J]. Exp Hematol, 2016, 44(1): 7583. DOI: 10.1016/j.exphem.2015.10.005.
[6] Blau O, Baldus CD, Hofmann WK, et al. Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts[J]. Blood, 2011, 118(20): 55835592. DOI: 10.1182/blood201103343467.
[7] Geyh S, Oz S, Cadeddu RP, et al. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells[J]. Leukemia, 2013, 27(9): 18411851. DOI: 10.1038/leu.2013.193.
[8] Johnson RC, Kurzer JH, Greenberg PL, et al. Mesenchymal stromal cell density is increased in higher grade myelodysplastic syndromes and independently predicts survival[J]. Am J Clin Pathol, 2014, 142(6): 795802. DOI: 10.1309/AJCP71OPHKOTLSUG.
[9] Cogle CR, Saki N, Khodadi E, et al. Bone marrow niche in the myelodysplastic syndromes[J]. Leuk Res, 2015, 39(10): 10201027. DOI: 10.1016/j.leukres.2015.06.017.
[10]Chen X, Eksioglu EA, Zhou J, et al. Induction of myelodysplasia by myeloidderived suppressor cells[J]. J Clin Invest, 2013, 123(11): 45954611. DOI: 10.1172/JCI67580.
[11]Gleason MK, Ross JA, Warlick ED, et al. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets[J]. Blood, 2014, 123(19): 30163026. DOI: 10.1182/blood201310533398.
[12]Warlick ED, Miller JS. Myelodysplastic syndromes: the role of the immune system in pathogenesis[J]. Leuk Lymphoma, 2011, 52(11): 20452049. DOI: 10.3109/10428194.2011.584002.
[13]Yang L, Qian Y, Eksioglu E, et al. The inflammatory microenvironment in MDS[J]. Cell Mol Life Sci, 2015, 72(10): 19591966. DOI: 10.1007/s000180151846x.
[14]Kondo A, Yamashita T, Tamura H, et al. Interferongamma and tumor necrosis factoralpha induce an immunoinhibitory molecule, B7H1, via nuclear factorkappaB activation in blasts in myelodysplastic syndromes[J]. Blood, 2010, 116(7): 11241131. DOI: 10.1182/blood200912255125.
[15]Kastrinaki MC, Pavlaki K, Batsali AK, et al. Mesenchymal stem cells in immunemediated bone marrow failure syndromes[J]. Clin Dev Immunol, 2013, 2013: 265608. DOI: 10.1155/2013/265608.
[16]Azizidoost S, Babashah S, Rahim F, et al. Bone marrow neoplastic niche in leukemia[J]. Hematology, 2014, 19(4): 232238. DOI: 10.1179/1607845413Y.0000000111.
[17]Kim M, Hwang S, Park K, et al. Increased expression of interferon signaling genes in the bone marrow microenvironment of myelodysplastic syndromes[J]. PLoS One, 2015, 10(3): e120602. DOI: 10.1371/journal.pone.0120602.
[18]Harada H, Harada Y. Recent advances in myelodysplastic syndromes: molecular pathogenesis and its implications for targeted therapies[J]. Cancer Sci, 2015, 106(4): 329336. DOI: 10.1111/cas.12614.
[19]Genovese G, Kahler AK, Handsaker RE, et al. Clonal hematopoiesis and bloodcancer risk inferred from blood DNA sequence[J]. N Engl J Med, 2014, 371(26): 24772487. DOI: 10.1056/NEJMoa1409405.
[20]Prebet T, Gore SD, Esterni B, et al. Outcome of highrisk myelodysplastic syndrome after azacitidine treatment failure[J]. J Clin Oncol, 2011, 29(24): 33223327. DOI: 10.1200/JCO |