国际肿瘤学杂志 ›› 2019, Vol. 46 ›› Issue (12): 734-740.doi: 10.3760/cma.j.issn.1673-422X.2019.12.006

• 论著 • 上一篇    下一篇

血清低密度脂蛋白在广泛期小细胞肺癌一线治疗中的预测价值

田梦1  李振祥2  付成瑞2  李宝生2  孙新臣1   

  1. 1 南京医科大学第一附属医院放疗科  210029;  2 山东省肿瘤防治研究院(山东省肿瘤医院)放疗科,山东第一医科大学(山东省医学科学院),济南  250117
  • 收稿日期:2019-11-10 修回日期:2019-11-15 出版日期:2019-12-08 发布日期:2019-12-09
  • 通讯作者: 孙新臣,李宝生 E-mail:sunxinchen@njmu.edu.cn;baoshli1963@163.com
  • 基金资助:
    国家自然科学基金(81602031);山东省自然科学基金(ZR2016HB12、ZR2016HP32);山东第一医科大学学术提升计划(2019LJ004);泰山学者建设工程(ts20120505)

Predictive value of serum low density lipoprotein for first-line treatment in extensive-stage small cell lung cancer

Tian Meng1, Li Zhenxiang2, Fu Chengrui2, Li Baosheng2, Sun Xinchen1   

  1. 1 Department of Radiation Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;  2 Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
  • Received:2019-11-10 Revised:2019-11-15 Online:2019-12-08 Published:2019-12-09
  • Contact: Sun Xinchen, Li Baosheng E-mail:sunxinchen@njmu.edu.cn;baoshli1963@163.com
  • Supported by:
    National Natural Science Foundation of China (81602031); Natural Science Foundation of Shandong Province of China (ZR2016HB12, ZR2016HP32); Academic Promotion Program of Shandong First Medical University (2019LJ004); Taishan Scholar Construction Project (ts20120505)

摘要: 目的  探讨低密度脂蛋白(LDL)与小细胞肺癌(SCLC)患者无进展生存期(PFS)的关系。方法  选取2014年5月1日至2018年10月31日山东省肿瘤医院收治的271例SCLC患者作为研究对象,按照美国退伍军人肺癌协会(VALSG)分期标准将患者分为局限期组(n=126)和广泛期组(n=145),采用Spearmen相关分析两组患者治疗前血清LDL水平与PFS的相关性。采用受试者工作特征曲线(ROC)确定LDL最佳临界值,分析治疗前LDL水平与PFS的相关性,进一步根据治疗期间LDL的动态变化将广泛期患者分为正常组[n=25,LDL≤2.55 mmol/L且至疾病进展(PD)前从未升高]、升高组(n=31,LDL≤2.55 mmol/L但至PD前至少升高过1次)、不正常组(n=33,至PD前LDL始终>2.55 mmol/L)、降低组(n=56,LDL>2.55 mmol/L且至PD前至少下降1次)。比较4组间PFS的差异。采用Kaplan-Meier法和log-rank检验进行生存分析,采用Cox比例风险模型分析广泛期患者PFS的影响因素。结果  全组患者中位PFS为7.1个月(1.4~27.1个月),局限期和广泛期患者的中位PFS分别为8.8个月和6.1个月,差异有统计学意义(χ2=28.723,P<0.001)。全组患者治疗前LDL水平与PFS呈负相关(r=-0.234,P<0.001),按VALSG分期分层后,仅广泛期患者治疗前LDL水平与PFS水平存在相关性(r=-0.329,P<0.001),局限期患者LDL与PFS不相关(r=-0.119,P=0.183)。以PFS为终点的广泛期患者ROC分析结果显示,LDL最佳临界值为2.55 mmol/L时敏感性和特异性最高,分别为55.56%和81.69%。将患者分为高LDL组(>2.55 mmol/L,n=164)和低LDL组(≤2.55 mmol/L,n=107),低LDL组PFS更长(9.0个月vs.6.2个月,χ2=16.064,P<0.001)。治疗前血清LDL水平与广泛期SCLC患者的PFS相关(χ2=21.419,P<0.001),与局限期患者的PFS无相关性(χ2=2.718,P=0.099)。广泛期SCLC患者在治疗期间LDL正常组、升高组、不正常组、降低组的中位PFS分别为9.2、6.5、5.0和6.2个月,且4组间PFS差异有统计学意义(χ2=16.411,P<0.001)。对广泛期患者的单因素分析显示,治疗前LDL>2.55 mmol/L(HR=0.436,95%CI为0.297~0.640,P<0.001)和治疗期间至PD前LDL始终>2.55 mmol/L(HR=2.215,95%CI为1.403~3.497,P<0.001)是PFS的危险因素,治疗期间LDL正常(HR=0.343,95%CI为0.190~0.618,P<0.001)是PFS的保护因素。多因素Cox回归分析显示治疗前LDL>2.55 mmol/L(HR=0.435,95%CI为0.300~0.632,P<0.001)和治疗期间至PD前LDL始终>2.55 mmol/L(HR=2.028,95%CI为1.386~2.966,P<0.001)为PFS的独立危险因素,治疗期间LDL正常(HR=0.318,95%CI为0.186~0.542,P<0.001)为PFS的独立保护因素。结论  血清LDL水平可作为广泛期SCLC患者接受一线化疗后PFS的预测指标。

关键词: 脂蛋白类, LDL, 小细胞肺癌, 治疗效果, 预测, 无进展生存期

Abstract: Objective  To investigate the relationship between serum low density lipoprotein (LDL) and the progression-free survival (PFS) of small cell lung cancer (SCLC) patients. Methods  A total of 271 SCLC patients admitted to Shandong Cancer Hospital from May 1, 2014 to October 31, 2018 were selected. These patients were divided into limited-stage group (n=126) and extensivestage group (n=145) according to Veteran′s Administration Lung Cancer Study Group (VALSG) evaluation standard. The correlation between the level of serum LDL before treatment and PFS was analyzed by Spearmen test in the two groups. After finding the cutoff value of LDL level by receiver operating characteristic curve (ROC) analysis, the relationship between LDL level before treatment and PFS was analyzed. According to the dynamic change of serum LDL during the treatment, extensive-stage patients were divided into four groups: normalized LDL group (n=25, patients whose LDL≤2.55 mmol/L and never increased until progression), increased LDL group (n=31, patients whose LDL≤2.55 mmol/L and increased at least once until progression), never-normalized LDL group (n=33, patients whose LDL>2.55 mmol/L and never normalized until progression), and decreased LDL group (n=56, patients whose LDL>2.55 mmol/L and decreased at least once until progression). Then the PFS among the four groups was compared. The survival curves were plotted by the Kaplan-Meier method and compared using the log-rank test. The significance of the independent variables for PFS in extensive-stage patients was analyzed using the Cox proportional hazards model. Results  The median PFS for the whole cohorts was 7.1 months (1.4-27.1 months). The median PFS for limited-stage patients and extensive-stage ones was 8.8 months and 6.1 months respectively, with a significant statistical difference (χ2=28.723, P<0.001). LDL levels before treatment were negatively associated with PFS in all the patients (r=-0.234, P<0.001) and extensive-stage group (r=-0.329, P<0.001), but there was no statistical significance in limitedstage group (r=-0.119, P=0.183). The cutoff point of LDL was 2.55 mmol/L, with the highest value of sensitivity (55.56%) and specificity (81.69%) in the ROC analysis using PFS as an end point for extensive-stage patients. Patients in the low-LDL group (≤2.55 mmol/L, n=107) had relatively longer PFS compared to the ones in the high-LDL group (>2.55 mmol/L, n=164) for whole cohorts (9.0 months vs. 6.2 months, χ2=16.064, P<0.001). The serum LDL level before treatment showed a prognostic power mainly related to PFS within the extensive-stage cohort (χ2=21.419, P<0.001), with no difference in the limited-stage cohort (χ2=2.718, P=0.099). In the extensive-stage cohort, the median PFS in the normalized LDL group, the increased LDL group, the nevernormalized LDL group and the decreased LDL group was 9.2, 6.5, 5.0 and 6.2 months respectively, and there was a significant difference in the PFS among the four groups (χ2=16.411, P<0.001). Univariate analysis showed that the LDL>2.55 mmol/L before treatment (HR=0.436, 95%CI: 0.297-0.640, P<0.001) and LDL>2.55 mmol/L and never normalized until progression (HR=2.215, 95%CI: 1.403-3.497, P<0.001) were risk factors for PFS, LDL normal during treatment (HR=0.343, 95%CI: 0.190-0.618, P<0.001) was the protective factor of PFS in extensive-stage patients. Multivariate Cox regression analysis showed that the LDL>2.55 mmol/L before treatment (HR=0.435, 95%CI: 0.300-0.632, P<0.01) and LDL>2.55 mmol/L and never normalized until progression (HR=2.028, 95% CI: 1.386-2.966, P<0.001) were independent risk factors for PFS, LDL normal during treatment (HR=0.318, 95%CI: 0.186-0.542, P<0.001) was independent protective factors of PFS. Conclusion  The serum LDL level may be used as a potential predictive marker for PFS in extensive-stage SCLC patients subjected to the first-line chemotherapy. 

Key words: Lipoproteins, LDL, Small cell lung carcinoma, Treatment outcome, Forecasting, Progression-free survival