[1] Osasan S, Zhang M, Shen F, et al. Osteogenic sarcoma: a 21st century review[J]. Anticancer Res, 2016, 36(9): 4391-4398. DOI: 10.21873/anticanres.10982.
[2] Gutowski CJ, BasuMallick A, Abraham JA. Management of bone sarcoma[J]. Surg Clin North Am, 2016, 96(5): 1077-1106. DOI: 10.1016/j.suc.2016.06.002.
[3] MarioEnríquez A, Bovée JV. Molecular pathogenesis and diagnostic, prognostic and predictive molecular markers in sarcoma[J]. Surg Pathol Clin, 2016, 9(3): 457-473. DOI: 10.1016/j.path.2016.04.009.
[4] Fuentes E, Palomo I, Alarcón M. Platelet miRNAs and cardiovascular diseases[J]. Life Sci, 2015, 133: 2944. DOI: 10.1016/j.lfs.2015.04.016.
[5] MomenHeravi F, Trachtenberg AJ, Kuo WP, et al. Genomewide study of salivary microRNAs for detection of oral cancer[J]. J Dent Res, 2014, 93 Suppl 7: S86-S93. DOI: 10.1177/0022034514531018.
[6] Fang Z, Tang J, Bai Y, et al. Plasma levels of microRNA24, microRNA320a, and microRNA4235p are potential biomarkers for colorectal carcinoma[J]. J Exp Clin Cancer Res, 2015, 34: 86. DOI: 10.1186/s13046-015-0198-6.
[7] Lu K, Wang J, Song Y, et al. miRNA243p promotes cell proliferation and inhibits apoptosis in human breast cancer by targeting p27Kip1[J]. Oncol Rep, 2015, 34(2): 995-1002. DOI: 10.3892/or.2015.4025.
[8] Lin SC, Liu CJ, Lin JA, et al. miR24 upregulation in oral carcinoma: positive association from clinical and in vitro analysis[J]. Oral Oncol, 2010, 46(3): 204-208. DOI: 10.1016/j.oraloncology.2009.12.005.
[9] Zhao G, Liu L, Zhao T, et al. Upregulation of miR24 promotes cell proliferation by targeting NAIF1 in nonsmall cell lung cancer[J]. Tumour Biol, 2015, 36(5): 3693-3701. DOI: 10.1007/s1327701430084.
[10] Inoguchi S, Seki N, Chiyomaru T, et al. Tumoursuppressive microRNA241 inhibits cancer cell proliferation through targeting FOXM1 in bladder cancer[J]. FEBS Lett, 2014, 588(17): 3170-3179. DOI: 10.1016/j.febslet.2014.06.058.
[11] Zhang MX, Zhang J, Zhang H, et al. miR243p suppresses malignant behavior of lacrimal adenoid cystic carcinoma by targeting PRKCH to regulate p53/p21 pathway[J]. PLoS One, 2016, 11(6): e0158433. DOI: 10.1371/journal.pone.0158433.
[12] Song L, Yang J, Duan P, et al. MicroRNA24 inhibits osteosarcoma cell proliferation both in vitro and in vivo by targeting LPAATβ[J]. Arch Biochem Biophys, 2013, 535(2): 128-135. DOI: 10.1016/j.abb.2013.04.001.
[13] Tang H, Massi D, Hemmings BA, et al. AKTions with a TWIST between EMT and MET[J]. Oncotarget, 2016, 7(38): 62767-62777. DOI: 10.18632/oncotarget.11232.
[14] Klbl AC, Jeschke U, Andergassen U. The significance of epithelialtomesenchymal transition for circulating tumor cells[J]. Int J Mol Sci, 2016, 17(8): pii: E1308. DOI: 10.3390/ijms17081308.
[15] Choi BH, Lee DH, Kim J, et al. Controls of nuclear factorkappa B signaling activity by 5′AMPactivated protein kinase activation with examples in human bladder cancer cells[J]. Int Neurourol J, 2016, 20(3): 182-187. DOI: 10.5213/inj.1632718.359.
[16] Matthews GM, de Matos Simoes R, Dhimolea E, et al. NF-κB dysregulation in multiple myeloma[J]. Semin Cancer Biol, 2016, 39: 68-76. DOI: 10.1016/j.semcancer.2016.08.005.
[17] Gao S, Sun Y, Zhang X, et al. IGFBP2 activates the NF-κB pathway to drive epithelialmesenchymal transition and invasive character in pancreatic ductal adenocarcinoma[J]. Cancer Res, 2016, 76(22): 6543-6554. DOI: 10.1158/00085472.CAN160438.
[18] Wang X, Liu Y, Dai L, et al. Foxp3 downregulation in NSCLC mediates epithelialmesenchymal transition via NFκB signaling[J]. Oncol Rep, 2016, 36(4): 2282-2288. DOI: 10.3892/or.2016.5024. |