国际肿瘤学杂志 ›› 2025, Vol. 52 ›› Issue (9): 560-565.doi: 10.3760/cma.j.cn371439-20250414-00095

• 论著 • 上一篇    下一篇

18F-FDG PET/CT联合超声的多模态列线图模型对三阴性乳腺癌的诊断价值

陈桥梁1, 覃心妍2, 来瑞鹤1, 檀双秀3()   

  1. 1南京大学医学院附属鼓楼医院 南京鼓楼医院核医学科,南京 210008
    2南京大学医学院,南京 210008
    3南京大学医学院附属鼓楼医院 南京鼓楼医院超声医学科,南京 210008
  • 收稿日期:2025-04-14 修回日期:2025-05-21 出版日期:2025-09-08 发布日期:2025-10-21
  • 通讯作者: 檀双秀 E-mail:tsx950304@163.com

Diagnostic value of multimodal Nomogram model combining 18F-FDG PET/CT and ultrasound for triple negative breast cancer

Chen Qiaoliang1, Qin Xinyan2, Lai Ruihe1, Tan Shuangxiu3()   

  1. 1Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing 210008, China
    2Medical School of Nanjing University, Nanjing 210008, China
    3Department of Ultrasound Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing 210008, China
  • Received:2025-04-14 Revised:2025-05-21 Online:2025-09-08 Published:2025-10-21
  • Contact: Tan Shuangxiu E-mail:tsx950304@163.com

摘要:

目的 探讨18F-FDG PET/CT联合超声构建的多模态列线图模型对三阴性乳腺癌(TNBC)的诊断价值。方法 选取2016年11月至2024年5月在南京大学医学院附属鼓楼医院收治的61例乳腺癌患者作为研究对象,其中TNBC 12例,非TNBC 49例。比较TNBC与非TNBC患者18F-FDG PET/CT代谢参数最大标准化摄取值(SUVmax)、平均标准化摄取值(SUVmean)、最小标准化摄取值(SUVmin)、肿瘤代谢体积(MTV)、病灶糖酵解总量(TLG)及超声参数长径、短径、回声、形态、边界、后方回声、纵横比、微钙化、血流分级和乳腺影像报告与数据系统(BI-RADS)分级。采用最小绝对收缩和选择算子(LASSO)回归进行特征筛选,将筛选出的变量进行二元多因素logistic回归分析得到诊断TNBC的独立影响因素。将影响诊断TNBC的独立因素建立列线图模型并进行可视化,使用受试者操作特征(ROC)曲线、校准曲线及决策曲线分析(DCA)分别评估模型的诊断效能、准确性和临床实用性。结果 TNBC与非TNBC患者间SUVmaxZ=-2.43,P=0.015)、SUVmeanZ=-2.54,P=0.011)、形态(P=0.004)、边界(χ2=4.86,P=0.028)、后方回声(P=0.027)、血流分级(χ2=4.52,P=0.034)差异均有统计学意义。LASSO回归筛选出的3个特征变量为SUVmax、形态和血流分级。多因素分析显示,SUVmaxOR=1.20,95%CI为1.04~1.38,P=0.012)、形态(OR=0.02,95%CI为0.01~0.49,P=0.016)、血流分级(OR=0.06,95%CI为0.01~0.74,P=0.028)均为诊断TNBC的独立影响因素。将上述独立影响因素建立列线图模型。ROC曲线分析显示,SUVmax、形态、血流分级、列线图模型诊断TNBC的曲线下面积(AUC)分别为0.73(95%CI为0.60~0.83)、0.66(95%CI为0.52~0.77)、0.67(95%CI为0.54~0.79)、0.90(95%CI为0.79~0.96),列线图模型的诊断价值高于SUVmaxZ=2.71,P=0.007)、形态(Z=3.61,P<0.001)和血流分级(Z=2.51,P=0.012)单独诊断。校准曲线和DCA显示列线图模型的准确性和临床实用性较好。结论 18F-FDG PET/CT的SUVmax联合超声的形态、血流分级构建的列线图模型具有较好的诊断TNBC的潜在价值。

关键词: 三阴性乳腺癌, 诊断, 氟脱氧葡萄糖F18, 正电子发射断层显像计算机体层摄影术, 超声检查,乳房

Abstract:

Objective To evaluate the diagnostic value of multimodal Nomogram model combining 18F-FDG PET/CT and ultrasound for triple negative breast cancer (TNBC). Methods A total of 61 breast cancer patients admitted at Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School from November 2016 to May 2024 were selected as the study subjects, including 12 cases of TNBC and 49 cases of non-TNBC. 18F-FDG PET/CT metabolic parameters maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), minimum standardized uptake value (SUVmin), tumor metabolic volume (MTV), and total lesion glycolysis (TLG), as well as the ultrasound parameters long diameter, short diameter, echogenicity, morphology, boundaries, posterior echogenicity, aspect ratio, microcalcifications, blood flow grading and Breast Imaging Reporting and Data System (BI-RADS) grading were compared between patients with and without TNBC. Least absolute shrinkage and selection operator (LASSO) regression was used for feature screening, and binary multivariate logistic regression analysis was conducted on the screened variables to obtain the independent influencing factors for diagnosing TNBC. The independent factors influencing the diagnosis of TNBC were established as Nomogram model and visualized. Receiver operator characteristic (ROC) curve, calibration curve and decision curve analysis (DCA) were used to evaluate the diagnostic efficacy, accuracy and clinical practicability of the model, respectively. Results There were statistically significant differences in SUVmaxZ=-2.43, P=0.015), SUVmeanZ=-2.54, P=0.011), morphology (P=0.004), boundaries (χ2=4.86, P=0.028), posterior echogenicity (P=0.027), and blood flow grading (χ2=4.52, P=0.034) between TNBC and non-TNBC patients. LASSO regression screened out three variables: SUVmax, morphology and blood flow grading. Multivariate analysis showed that, SUVmaxOR=1.20, 95%CI: 1.04-1.38, P=0.012), morphology (OR=0.02, 95%CI: 0.01-0.49, P=0.016), and blood flow grading (OR=0.06, 95%CI: 0.01-0.74, P=0.028) were the independent influencing factors for diagnosing TNBC. A Nomogram model was established based on the above independent influencing factors. ROC curve showed that, area under the curve (AUC) of SUVmax, morphology, blood flow grading, and the Nomogram model were 0.73 (95%CI: 0.60-0.83), 0.66 (95%CI: 0.52-0.77), 0.67 (95%CI: 0.54-0.79), 0.90 (95%CI: 0.79-0.96), respectively, and the diagnostic value of the Nomogram model was higher than that of SUVmaxZ=2.71, P=0.007), morphology (Z=3.61, P<0.001), and blood flow grading (Z=2.51, P=0.012) alone. Calibration curve and DCA showed better accuracy and clinical practicability of the Nomogram model. Conclusions Nomogram model constructed by combining the SUVmax of 18F-FDG PET/CT with the morphology and blood flow grading of ultrasound has a promising potential for diagnosing TNBC.

Key words: Triple negative breast neoplasms, Diagnosis, Fluorodeoxyglucose F18, Positron emission tomography computed tomography, Ultrasonography, mammary