[1] Ul Ain Q, Chung JY, Kim YH. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN[J]. J Control Release, 2015, 205: 120127. DOI: 10.1016/j.jconrel.2014.12.036.
[2] Mojica FJ, DiezVillasenor C, Soria E, et al. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria[J]. Mol Microbiol, 2000, 36(1): 244246.
[3] Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 17091712. DOI: 10.1126/science.1138140.
[4] Mojica FJ, DiezVillasenor C, GarciaMartinez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. J Mol Evol, 2005, 60(2): 174182. DOI: 10.1007/s0023900400463.
[5] Brouns SJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science, 2008, 321(5891): 960964. DOI: 10.1126/science.1159689.
[6] Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA[J]. Science, 2008, 322(5909): 18431845. DOI: 10.1126/science.1165771.
[7] Deveau H, Barrangou R, Garneau JE, et al. Phage response to CRISPRencoded resistance in Streptococcus thermophilus[J]. J Bacteriol, 2008, 190(4): 13901400. DOI: 10.1128/JB.0141207.
[8] Shen J, Lv L, Wang X, et al. Comparative analysis of CRISPRCas systems in Klebsiella genomes[J]. J Basic Microbiol, 2017, 57(4): 325336. DOI: 10.1002/jobm.201600589.
[9] Guan L, Han Y, Zhu S, et al. Application of CRISPRCas system in gene therapy: preclinical progress in animal model[J]. DNA Repair (Amst), 2016, 46: 18. DOI: 10.1016/j.dnarep.2016.07.004.
[10] Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPRCas systems[J]. Nat Rev Microbiol, 2015, 13(11): 722736. DOI: 10.1038/nrmicro3569.
[11] 杨帆, 李寅. 新一代基因组编辑系统CRISPR/Cpf1[J]. 生物工程学报, 2017, 33(3): 361371. DOI: 10.13345/j.cjb.170029.
[12] Kunin V, Sorek R, Hugenholtz P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats[J]. Genome Biol, 2007, 8(4): R61. DOI: 10.1186/gb200784r61.
[13] Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 17091712. DOI: 10.1126/science.1138140.
[14] 杨悦, 訾晓渊, 孙颖浩. CRISPRCas基因编辑技术在泌尿系统肿瘤研究中的应用[J]. 中国肿瘤生物治疗杂志, 2018, 25(1): 916. DOI: 10.3872/j.issn.1007385X.2018.01.002.
[15] Li Y, Ma S, Sun L, et al. Programmable single and multiplex baseediting in bombyx mori using RNAguided cytidine deaminases[J]. G3 (Bethesda), 2018, 8(5): 17011709. DOI: 10.1534/g3.118.200134.
[16] White MK, Khalili K. CRISPR/Cas9 and cancer targets: future possibilities and present challenges[J]. Oncotarget, 2016, 7(11): 1230512317. DOI: 10.18632/oncotarget.7104.
[17] 孟泽松, 王飞飞, 王光林, 等. CRISPR/Cas9基因编辑技术在肿瘤研究及治疗中的应用[J]. 肿瘤, 2016, 36(5): 13951401. DOI: 10.3781/j.issn.10007431.2016.55.514.
[18] Hu Z, Yu L, Zhu D, et al. Disruption of HPV16E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells[J]. Biomed Res Int, 2014, 2014: 612823. DOI: 10.1155/2014/612823.
[19] Zhen S, Li X. Oncogenic human papillomavirus: application of CRISPR/Cas9 therapeutic strategies for cervical cancer[J]. Cell Physiol Biochem, 2017, 44(6): 24552466. DOI: 10.1159/000486168.
[20] Noguchi T, Ward JP, Gubin MM, et al. Temporally distinct PDL1 expression by tumor and host cells contributes to immune escape[J]. Cancer Immunol Res, 2017, 5(2): 106117. DOI: 10.1158/23266066.CIR160391.
[21] Su S, Hu B, Shao J, et al. CRISPRCas9 mediated efficient PD1 disruption on human primary T cells from cancer patients[J]. Sci Rep, 2016, 6: 20070. DOI: 10.1038/srep20070.
[22] Kalebic N, Taverna E, Tavano S, et al. CRISPR/Cas9induced disruption of gene expression in mouse embryonic brain and single neural stem cells in vivo[J]. EMBO Rep, 2016, 17(3): 338348. DOI: 10.15252/embr.201541715.
[23] Li L, Hu S, Chen X. Nonviral delivery systems for CRISPR/Cas9based genome editing: challenges and opportunities[J]. Biomaterials, 2018, 171: 207218. DOI: 10.1016/j.biomaterials.2018.04.031.
[24] Kulcsár PI, Tálas A, Huszár K, et al. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage[J]. Genome Biol, 2017, 18(1): 190. DOI: 10.1186/s1305901713188.
[25] Chen JS, Dagdas YS, Kleinstiver BP, et al. Enhanced proofreading governs CRISPRCas9 targeting accuracy[J]. Nature, 2017, 550(7676): 407410. DOI: 10.1038/nature24268.
[26] Cox DBT, Gootenberg JS, Abudayyeh OO, et al. RNA editing with CRISPRCas13[J]. Science, 2017, 358(6366): 10191027. DOI: 10.1126/science.aaq0180. |