Journal of International Oncology ›› 2018, Vol. 45 ›› Issue (1): 53-.doi: 10.3760/cma.j.issn.1673-422X.2018.01.012
Previous Articles Next Articles
Yuan Qing, Chen Shaoshui
Online:
2018-01-08
Published:
2018-02-12
Contact:
Chen Shaoshui
E-mail:byfychenss@126.com
Yuan Qing, Chen Shaoshui. Application of circulating microRNAs in multiple myeloma[J]. Journal of International Oncology, 2018, 45(1): 53-.
[1] 侯健. 多发性骨髓瘤的免疫学研究[J]. 上海免疫学杂志, 2000, 5(4): 193196. DOI: 10.3969/j.issn.10012478.2000.04.001. [2] Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and downregulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. Proc Natl Acad Sci USA, 2002, 99(24): 1552415529. [3] Pichiorri F, Suh SS, Ladetto M, et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis[J]. Proc Natl Acad Sci USA, 2008, 105 (35): 1288512890. DOI: 10.1073/pnas.0806202105. [4] Gutiérrez NC, Sarasquete ME, Misiewiczkrzeminska I, et al. Deregulation of microRNA expression in the different genetic subtypes of multiple myeloma and correlation with gene expression profiling[J]. Leukemia, 2010, 24(3): 629637. DOI: 10.1038/leu.2009.274. [5] Yyusnita, Norsiah, Zakiah I, et al. MicroRNA (miRNA) expression profiling of peripheral blood samples in multiple myeloma patients using microarray[J]. Malays J Pathol, 2012, 34(2): 133143. [6] Chen L, Li C, Zhang R, et al. miR1792 cluster microRNAs confers tumorigenicity in multiple myeloma[J]. Cancer Lett, 2011, 309(1): 6270. DOI: 10.1016/j.canlet.2011.05.017. [7] Leone E, Morelli E, Di Martino MT, et al. Targeting miR21 inhibits in vitro and in vivo multiple myeloma cell growth[J]. Clin Cancer Res, 2013, 19(8): 20962106. DOI: 10.1158/10780432.CCR123325. [8] Amodio N, Leotta M, Bellizzi D, et al. DNAdemethylating and antitumor activity of synthetic miR29b mimics in multiple myeloma[J]. Oncotarget, 2012, 3(10): 12461258. [9] Raimondi L, De Luca A, Morelli E, et al. MicroRNAs: novel crossroads between myeloma cells and the bone marrow microenvironment[J]. Biomed Res Int, 2016, 2016: 6504593. DOI: 10.1155/2016/6504593. [10] Shen X, Guo Y, Yu J, et al. miRNA202 in bone marrow stromal cells affects the growth and adhesion of multiple myeloma cells by regulating B cellactivating factor[J]. Clin Exp Med, 2016, 16(3): 307316. DOI: 10.1007/s1023801503554. [11] Kubiczkova L, Kryukov F, Slaby O, et al. Circulating serum microRNAs as novel diagnostic and prognostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance[J]. Haematologica, 2014, 99(3): 511518. DOI: 10.3324/haematol.2013.093500. [12] Jones CI, Zabolotskaya MV, King AJ, et al. Identification of circulating microRNAs as diagnostic biomarkers for use in multiple myeloma[J]. Br J Cancer, 2012, 107(12): 19871996. DOI: 10.1038/bjc.2012.525. [13] Zhang L, Cao D, Tang L, et al. A panel of circulating miRNAs as diagnostic biomarkers for screening multiple myeloma: a systematic review and metaanalysis[J]. Int J Lab Hematol, 2016, 38(6): 589599. DOI: 10.1111/ijlh.12560. [14] Yu J, Qiu X, Shen X, et al. miR202 expression concentration and its clinical significance in the serum of multiple myeloma patients[J]. Ann Clin Biochem, 2014, 51(Pt5): 543549. DOI: 10.1177/0004563213501155. [15] Qu X, Zhao M, Wu S, et al. Circulating microRNA 4835p as a novel biomarker for diagnosis survival prediction in multiple myeloma[J]. Med Oncol, 2014, 31(10): 219. DOI: 10.1007/s120320140219x. [16] Hao M, Zang M, Wendlandt E, et al. Low serum miR19a expression as a novel poor prognostic indicator in multiple myeloma[J]. Int J Cancer, 2015, 136(8): 18351844. DOI: 10.1002/ijc.29199. [17] Saleh EM, Wahab AH, Elhouseini ME, et al. Loss of heterozygosity at BRCA1, TP53, nm23 and other loci on chromosome 17q in human breast carcinoma[J]. J Egypt Natl Canc Inst, 2004, 16(1): 6268. [18] SimonKayser B, Scoul C, Renaudin K, et al. Molecular cloning and characterization of FBXO47, a novel gene containing an Fbox domain, located in the 17q12 band deleted in papillary renal cell carcinoma[J]. Genes Chromosomes Cancer, 2005, 43(1): 8394. [19] Rocci A, Hofmeister CC, Geyer S, et al. Circulating miRNA markers show promise as new prognosticators for multiple myeloma[J]. Leukemia, 2014, 28(9): 19221926. DOI: 10.1038/leu.2014.155. [20] Gao X, Zhang R, Qu X, et al. MiR15a, miR161 and miR1792 cluster expression are linked to poor prognosis in multiple myeloma[J]. Leuk Res, 2012, 36(12): 15051509. DOI: 10.1016/j.leukres.2012.08.021. [21] Huang JJ, Yu J, Li JY, et al. Circulating microRNA expression is associated with genetic subtype and survival of multiple myeloma[J]. Med Oncol, 2012, 29(4): 24022408. DOI: 10.1007/s1203201202103. [22] Yoshizawa S, Ohyashiki JH, Ohyashiki M, et al. Downregulated plasma miR92a levels have clinical impact on multiple myeloma and related disorders[J]. Blood Cancer J, 2012, 2(1): e53. DOI: 10.1038/bc j.2011.51. [23] Sevcikova S, Kubiczkova L, Sedlarikova L, et al. Serum miR29a as a marker of multiple myeloma[J]. Leuk Lymphoma, 2013, 54(1): 189191. DOI: 10.3109/10428194.2012.704030. [24] 刘波, 李世龙, 尤建宇, 等. 探讨miRNA表达比在多发性骨髓瘤中的预测作用[J]. 中国实验诊断学, 2015, 19(2): 259261. [25] Munker R, Liu CG, Taccioli C, et al. MicroRNA profiles of drug resistant myeloma cell lines[J]. Acta Haematol, 2010, 123(4): 201204. DOI: 10.1159/000302889. [26] Palagani A, Op de Beeck K, Naulaerts S, et al. Ectopic microRNA1505p transcription sensitizes glucocorticoid therapy response in MM1S multiple myeloma cells but fails to overcome hormone therapy resistance in MM1R cells[J]. PLoS One, 2014, 9(12): e113842. DOI: 10.1371/journal.pone.0113842. [27] Podar K, Chauhan D, Anderson KC. Bone marrow microenvironment and the identification of new targets for myeloma therapy[J]. Leukemia, 2009, 23(1): 1024. DOI: 10.1038/leu.2008.259. [28] Ballabio E, Armesto M, Breeze CE, et al. Bortezomib action in multiple myeloma: microRNAmediated synergy (and miR27a/CDK5 driven sensitivity)?[J]. Blood Cancer J, 2012, 2: e83. DOI: 10.1038/bcj.2012.31. [29] Lffler D, BrockeHeidrich K, Pfeifer G, et al. Interleukin6 dependent survival of multiple myeloma cells involves the Stat3mediated induction of microRNA21 through a highly conserved enhancer[J]. Blood, 2007, 110(4): 13301333. |
[1] | Ren Lu, Xie Xiaoli, Zhang Kun, Wang Lijuan. Effects and mechanisms of dihydroartemisinin combined with carfilzomib on the activity, proliferation, and apoptosis of multiple myeloma cells [J]. Journal of International Oncology, 2024, 51(3): 129-136. |
[2] | Gong Yan, Chen Honglei. Research progress on the mechanism of microRNA regulation of cisplatin resistance in ovarian cancer [J]. Journal of International Oncology, 2024, 51(3): 186-190. |
[3] | Quan Zhenhao, Xu Feipeng, Huang Zhe, Huang Xianjin, Chen Rihong, Sun Kaiyu, Hu Xu, Lin Lin. lncRNA FTX silencing inhibits gastric cancer cell proliferation through the miR-22-3p/NLRP3 inflammasome pathway [J]. Journal of International Oncology, 2023, 50(4): 202-207. |
[4] | Zhang Yuxiao, Zhang Liansheng, Li Lijuan. Research status and application prospect of a novel immune checkpoint TIGIT in the immunotherapy of multiple myeloma [J]. Journal of International Oncology, 2023, 50(2): 122-125. |
[5] | Zhao Jianhao, Duan Yanchao. Research progress in the pathogenesis of extramedullary disease in multiple myeloma [J]. Journal of International Oncology, 2023, 50(1): 55-59. |
[6] | Gao Shan, Lu Minqiu, Shi Lei, Chu Bin, Fang Lijuan, Xiang Qiuqing, Wang Yutong, Ding Yuehua, Bao Li. Clinical efficacy and safety of ixazomib-based therapy in the treatment of relapsed or refractory multiple myeloma [J]. Journal of International Oncology, 2022, 49(5): 286-291. |
[7] | Zhou Renbang, Zhang Zhongchuan, Xu Zhiyuan, Zhu Xunbing. MiR-219a-5p inhibits the proliferation, invasion and migration of osteosarcoma U2OS cells by negatively regulating HMGA2 [J]. Journal of International Oncology, 2022, 49(4): 193-198. |
[8] | Jin Jiahui, Chen Cunhai, Ma Xuezhen. Effects of radiation-associated miRNA in radiotherapy for breast cancer [J]. Journal of International Oncology, 2022, 49(12): 735-738. |
[9] | Jing Wenjun, Zhao Wenwen, Feng Qingqing, Zhao Wenfei, Zhao Lili, Zhang Xue, Wei Hongmei. Molecular basis and clinical prospect of the miR-34 family for the treatment of gastric cancer [J]. Journal of International Oncology, 2022, 49(11): 681-686. |
[10] | Luo Liyun, Lai Canhui, Liang Renpei, Yang Aiwu, Lin Zhimin. Correlation between the expressions of miR-524-5p and SOX9 in advanced gastric cancer and their influences on chemotherapy efficacy and prognosis [J]. Journal of International Oncology, 2022, 49(1): 45-50. |
[11] | Hong Anlan, Cao Meng, Wang Yan, Fang Fang. Research progress on lncRNAs as members of ceRNA network in melanoma [J]. Journal of International Oncology, 2022, 49(1): 61-64. |
[12] | Liu Pei, Pu Jiaze, Huang Wen, Wang Fei. Expression differences of miR-200c, miR-19a and miR-155 in gefitinib sensitive and drug resistant NSCLC patients and their effects on prognosis [J]. Journal of International Oncology, 2021, 48(7): 409-414. |
[13] | Wang Yang, Liu Qian, Long Hui, Wu Qingming. Research status of fecal detection for colorectal cancer markers [J]. Journal of International Oncology, 2021, 48(7): 441-444. |
[14] | Sun Ruijie, Shan Ningning. Immune, targeted therapy and related issues of relapsed/refractory multiple myeloma [J]. Journal of International Oncology, 2021, 48(6): 381-384. |
[15] | Cheng Yiming, Li Gang, Wang Zhenming, Lyu Qianwen, Li Shirong. Value of serum miR-196a-5p and miR-105-5p in differential diagnosis of benign and malignant pulmonary nodules [J]. Journal of International Oncology, 2021, 48(5): 282-286. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||