Journal of International Oncology ›› 2017, Vol. 44 ›› Issue (10): 775-778.doi: 10.3760/cma.j.issn.1673-422X.2017.10.013
Previous Articles Next Articles
Fang Jiahui, Wang Changshan, Jia Yongfeng
Online:
2017-10-08
Published:
2017-11-08
Contact:
Jia Yongfeng
E-mail:yfjia0471@163.com
Supported by:
Fang Jiahui, Wang Changshan, Jia Yongfeng. Histone modification in breast cancer[J]. Journal of International Oncology, 2017, 44(10): 775-778.
[1] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115132. DOI: 10.3322/caac.21338. [2] Kanwal R, Gupta S. Epigenetic modifications in cancer[J]. Clin Genet, 2012, 81(4): 303311. DOI: 10.1111/j.13990004.2011.01809.x. [3] Yen CY, Huang HW, Shu CW, et al. DNA methylation, histone acetylation and methylation of epigenetic modifications as a therapeutic approach for cancers[J]. Cancer Lett, 2016, 373(2): 185192. DOI: 10.1016/j.canlet.2016.01.036. [4] Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation[J]. Biochim Biophys Acta, 2014, 1839(12): 13621372. DOI: 10.1016/j.bbagrm.2014.02.007. [5] Liu Y, Liu K, Qin S, et al. Epigenetic targets and drug discovery: part 1: histone methylation[J]. Pharmacol Ther, 2014, 143(3): 275294. DOI: 10.1016/j.pharmthera.2014.03.007. [6] McGrath J, Trojer P. Targeting histone lysine methylation in cancer[J]. Pharmacol Ther, 2015, 150: 122. DOI: 10.1016/j.pharmthera.2015.01.002. [7] Chou RH, Chiu L, Yu YL, et al. The potential roles of EZH2 in regenerative medicine[J]. Cell Transplant, 2015, 24(3): 313317. DOI: 10.3727/096368915X686823. [8] Vlkel P, Dupret B, Le Bourhis X, et al. Diverse involvement of EZH2 in cancer epigenetics[J]. Am J Transl Res, 2015, 7(2): 175193. [9] Chou RH, Chiu L, Yu YL, et al. The potential roles of EZH2 in regenerative medicine[J]. Cell Transplant, 2015, 24(3): 313317. DOI: 10.3727/096368915X686823. [10] Zhang J, Ding L, Holmfeldt L, et al. The genetic basis of early Tcell precursor acute lymphoblastic leukaemia[J]. Nature, 2012, 481(7380): 157163. DOI: 10.1038/nature10725. [11] Yokoyama Y, Matsumoto A, Hieda M, et al. Loss of histone H4K20 trimethylation predicts poor prognosis in breast cancer and is associated with invasive activity[J]. Breast Cancer Res, 2014, 16(3): R66. DOI: 10.1186/bcr3681. [12] Zhao QY, Lei PJ, Zhang X, et al. Global histone modification profiling reveals the epigenomic dynamics during malignant transformation in a fourstage breast cancer model[J]. Clin Epigenetics, 2016, 8: 34. DOI: 10.1186/s131480160201x. [13] Healey MA, Hu R, Beck AH, et al. Association of H3K9me3 and H3K27me3 repressive histone marks with breast cancer subtypes in the Nurses′ Health Study[J]. Breast Cancer Res Treat, 2014, 147(3): 639651. DOI: 10.1007/s1054901430891. [14] Holm K, Grabau D, Lvgren K, et al. Global H3K27 trimethylation and EZH2 abundance in breast tumor subtypes[J]. Mol Oncol, 2012, 6(5): 494506. DOI: 10.1016/j.molonc.2012.06.002. [15] Xu B, Konze KD, Jin J, et al. Targeting EZH2 and PRC2 dependence as novel anticancer therapy[J]. Exp Hematol, 2015, 43(8): 698712. DOI: 10.1016/j.exphem.2015.05.001. [16] Dessauvagie BF, Thomas C, Robinson C, et al. Validation of mitosis counting by automated phosphohistone H3 (PHH3) digital image analysis in a breast carcinoma tissue microarray[J]. Pathology, 2015, 47(4): 329334. DOI: 10.1097/PAT.0000000000000248. [17] Klintman M, Strand C, Ahlin C, et al. The prognostic value of mitotic activity index (MAI), phosphohistone H3 (PPH3), cyclin B1, cyclin A, and Ki67, alone and in combinations, in nodenegative premenopausal breast cancer[J]. PLoS One, 2013, 8(12): e81902. DOI: 10.1371/journal.pone.0081902. [18] Harshman SW, Hoover ME, Huang C, et al. Histone H1 phosphorylation in breast cancer[J]. J Proteome Res, 2014, 13(5): 24532467. DOI: 10.1021/pr401248f. [19] Prenzel T, Begusnahrmann Y, Kramer F, et al. Estrogendependent gene transcription in human breast cancer cells relies upon proteasomedependent monoubiquitination of histone H2B[J]. Cancer Res, 2011, 71(17): 57395753. DOI: 10.1158/00085472.CAN111896. [20] Cole AJ, CliftonBligh R, Marsh DJ. Histone H2B monoubiquitination: roles to play in human malignancy[J]. Endocr Relat Cancer, 2015, 22(1): T19T33. DOI: 10.1530/ERC140185. [21] Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy[J]. Cell, 2012, 150(1): 1227. DOI: 10.1016/j.cell.2012.06.013. [22] Krze′slak A, Forma E, Bernaciak M, et al. Gene expression of OGlcNAc cycling enzymes in human breast cancers[J]. Clin Exp Med, 2012, 12(1): 6165. DOI: 10.1007/s1023801101385. [23] Bogachek MV, Chen Y, Kulak MV, et al. Sumoylation pathway is required to maintain the basal breast cancer subtype[J]. Cancer Cell, 2014, 25(6): 748761. DOI: 10.1016/j.ccr.2014.04.008. [24] Morera L, Lübbert M, Jung M, et al. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy[J]. Clin Epigenetics, 2016, 8: 57. DOI: 10.1186/s1314801602234. [25] Lakshmaiah KC, Jacob LA, Aparna S, et al. Epigenetic therapy of cancer with histone deacetylase inhibitors[J]. J Cancer Res Ther, 2014, 10(3): 469478. DOI: 10.4103/09731482.137937. [26] Huang X, Wang S, Lee CK, et al. HDAC inhibitor SNDX275 enhances efficacy of trastuzumab in erbB2overexpressing breast cancer cells and exhibits potential to overcome trastuzumab resistance[J]. Cancer Lett, 2011, 307(1): 7279. DOI: 10.1016/j.canlet.2011.03.019. [27] Huynh KT, Chong KK, Greenberg ES, et al. Epigenetics of estrogen receptornegative primary breast cancer[J]. Expert Rev Mol Diagn, 2012, 12(4): 371382. DOI: 10.1586/erm.12.26. [28] Munster PN, Thurn KT, Thomas S, et al. A phase Ⅱ study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapyresistant breast cancer[J]. Br J Cancer, 2011, 104(12): 18281835. DOI: 10.1038/bjc.2011.156. [29] McCabe MT, Ott HM, Ganji G, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2activating mutations[J]. Nature, 2012, 492(7427): 108112. DOI: 10.1038/nature11606. [30] Daigle SR, Olhava EJ, Therkelsen CA, et al. Potent inhibition of DOT1L as treatment of MLLfusion leukemia[J]. Blood, 2013, 122(6): 10171025. DOI: 10.1182/blood201304497644. [31] Klaus CR, Iwanowicz D, Johnston D, et al. DOT1L inhibitor EPZ5676 displays synergistic antiproliferative activity in combination with standard of care drugs and hypomethylating agents in MLLrearranged leukemia cells[J]. J Pharmacol Exp Ther, 2014, 350(3): 646645. DOI: 10.1124/jpet.114.214577. [32] RodríguezParedes M, Esteller M. Cancer epigenetics reaches mainstream oncology[J]. Nat Med, 2011, 17(3): 330339. DOI: 10.1038/nm.2305. [33] Chen CW, Koche RP, Sinha AU, et al. DOT1L inhibits SIRT1mediated epigenetic silencing to maintain leukemic gene expression in MLLrearranged leukemia[J]. Nat Med, 2015, 21(4): 335343. DOI: 10.1038/nm.3832. [34] Zagni C, Chiacchio U, Rescifina A. Histone methyltransferase inhibitors: novel epigenetic agents for cancer treatment[J]. Curr Med Chem, 2013, 20(2): 167185. [35] Kim TD, Shin S, Berry WL, et al. The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells[J]. J Cell Biochem, 2012, 113(4): 13681376. DOI: 10.1002/jcb.24009. [36] Kogure M, Takawa M, Cho HS, et al. Deregulation of the histone demethylase JMJD2A is involved in human carcinogenesis through regulation of the G(1)/S transition[J]. Cancer Lett, 2013, 336(1): 7684. DOI: 10.1016/j.canlet.2013.04.009. [37] Berry WL, Shin S, Lightfoot SA, et al. Oncogenic features of the JMJD2A histone demethylase in breast cancer[J]. Int J Oncol, 2012, 41(5): 17011706. DOI: 10.3892/ijo.2012.1618. [38] Lim S, Janzer A, Becker A, et al. Lysinespecific demethylase 1 (LSD1) is highly expressed in ERnegative breast cancers and a biomarker predicting aggressive biology[J]. Carcinogenesis, 2010, 31(3): 512520. DOI: 10.1093/carcin/bgp324. |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[3] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[4] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[5] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[6] | Wang Jing, Xu Wenting. Value of NLR, CEA combined with coagulation indicators in the differential diagnosis of benign and malignant breast nodules with a diameter ≤ 1.0 cm [J]. Journal of International Oncology, 2023, 50(9): 520-526. |
[7] | Feng Chengtian, Huang Furong, Cao Shiyu, Wang Jianyu, Nanding Abiyasi, Jiang Yongdong, Zhu Juanying. Relationships between HER2 protein expression and imaging features in HER2 positive breast cancer patients [J]. Journal of International Oncology, 2023, 50(9): 527-531. |
[8] | Feng Dongxu, Wu Wei, Gao Pingfa, Wang Jun, Shi Lijuan, Chen Dawei, Li Wenbing, Zhang Meifeng. Effects of miR-451 on glycolysis and apoptosis of breast cancer cells by regulating Rho/ROCK1 pathway [J]. Journal of International Oncology, 2023, 50(8): 449-456. |
[9] | Pan Shulan, Liu Chang, He Ping. Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer [J]. Journal of International Oncology, 2023, 50(8): 457-462. |
[10] | Wang Wende, Zeng De. Research progress on the mechanism of endocrine therapy resistance for breast cancer [J]. Journal of International Oncology, 2023, 50(6): 352-356. |
[11] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[12] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong. Research progress on targeted therapy of breast cancer with low expression of HER2 [J]. Journal of International Oncology, 2023, 50(4): 236-240. |
[13] | Zhou Ting, Xu Shaohua, Mei Lin. Efficacy and safety of bevacizumab combined with capecitabine in the treatment of advanced breast cancer [J]. Journal of International Oncology, 2023, 50(3): 144-149. |
[14] | Li Lixi, Zhang Di, Luo Yang, Ma Fei. Clinical application of PARP inhibitors in breast cancer [J]. Journal of International Oncology, 2023, 50(2): 91-96. |
[15] | Geng Rui, Ma Junqiang, Guo Qiang, Niu Zhaofeng. Tendency of elderly patients with breast cancer to choose comprehensive treatment mode and its influencing factors [J]. Journal of International Oncology, 2023, 50(11): 650-654. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||