[1] 赵晶, 姜达. 恶性肿瘤高凝状态及其干预[J]. 癌症进展, 2013, 11(1): 48-52.
[2] 陈国荣. 恶性肿瘤患者血栓的形成机制与诊断进展[J]. 新乡医学院学报, 2015, 32(9): 891-893.
[3] Anand M, Brat DJ. Oncogenic regulation of tissue factor and thrombosis in cancer[J]. Thromb Res, 2012, 129 Suppl 1: S46-S49. DOI: 10.1016/S00493848(12)700154.
[4] 付晓飞, 杨之斌, 殷正丰. 血小板与循环肿瘤细胞[J]. 肿瘤, 2014, 34(3): 286-290.
[5] Grane CA, Han SJ, Barry JJ, et al. TGFbeta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients[J]. Neuro Oncol, 2010, 12(1): 7-13. DOI: 10.1093/neuonc/nop009.
[6] Gigante M, Gesualdo L, Ranieri E.TGFbeta: a master switch in tumor immunity[J]. Curr Pharm Des, 2012, 18(27): 4126-4134.
[7] Van den Berg YW, Osanto S, Reitsma PH, et al. The relationship between tissue factor and cancer progression: insights from bench and bedside[J]. Blood, 2012, 119(4): 924-932. DOI: 10.1182/blood201106317685.
[8] Godby RC, van den Berg YW, Srinvasan RS, et al. Nonproteolytic properties of murine alternatively spliced tissue factor: implications for integrinmediated signaling in murine models[J]. Mol Med, 2012, 18(1): 771-779. DOI: 10.2119/molmed.2011.00416.
[9] Srinivasan R, Ozhegov E, van den Berg YW, et al. Splice variants of tissue factor promote monocyteendothelial interactions by triggering the expression of cell adhesion molecules via integrinmediated signaling[J]. Thromb Haemost, 2011, 9(10): 2087-2096. DOI: 10.1111/j.15387836.2011.04454.
[10] Ettelaie C, Collier ME, Mei MP, et al. Enhanced binding of tissue factor microparticles to collagenⅣ and fibronectin leads to increased tissue factor activity in vitro[J]. Thromb Haemost, 2013, 109(1): 61-71. DOI: 10.1160/TH12050279.
[11] Magnus N, Garnier D, Meehan B, et al. Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations[J]. Proc Natl Acad Sci USA, 2014, 111(9): 3544-3549.
[12] Breij EC, de Goeij BE, Verploegen S, et al. An antibodydrug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors[J]. Caner Res, 2014, 74(4): 1214-1226. DOI: 10.1158/00085472.CAN132440.
[13] Garnier D, Magnus N, Lee TH, et al. Cancer cells induced to express mesenchymal phenotype release exosomelike extracellular vesicles carrying tissue factor[J]. J Biol Chem, 2012, 287(52): 43565-43572. DOI: 10.1074/jbc.M112. 401760.
[14] Del Conde I, Shrimpton CN, Thiagarajan P, et al. Tissuefactorbearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation[J]. Blood, 2005, 106(5): 1604-1611.
[15] Hathcock J, Nemerson Y. Platelet deposition inhibits tissue factor activity: in vitro clots are impermeable to factor Ⅹa[J]. Blood, 2004, 104(1):123-127.
[16] Zwicker JI, Liebman H, Neuberg D, et al. Tumorderived tissue factorbearing microparticles are associated with venous thromboembolic events in malignancy[J]. Clin Cancer Res, 2009, 15(22): 6830-6840. DOI: 10.1158/10780432. CCR090371.
[17] Nadir Y, Brenner B. Heparanase multiple effects in cancer[J]. Thromb Res, 2014, 133Suppl 2: S90-S94. DOI: 10.1016/S00493848(14)500151.
[18] Menschikowski M, Hagelgans A, Tiebel O, et al. Regulation of thrombomodulin expression in prostate cancer cells[J]. Cancer Lett, 2012, 322(2): 177-184. DOI: 10.1016/j.canlet.2012.03.001.
[19] Chen LM, Wang W, Lee JC, et al. Thrombomodulin mediates the progression of epithelial ovarian cancer cells[J]. Tumour Biol, 2013, 34(6): 3743-3751. DOI: 10.1007/s132770130958x.
[20] Demers M, Wagner DD. Neutrophil extracellular traps: A new link to cancerassociated thrombosis and potential implications for tumor progression[J]. Oncol Immunol, 2013, 2(2): e22946.
[21] Demers M, Krause DS, Schatzberg D, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancerassociated thrombosis[J]. Proc Natl Acad Sci USA, 2012, 109(32): 13076-13081. DOI: 10.1073/pnas.1200419109.
[22] Massberg S, Grahl L, von Bruehl ML, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases[J]. Nat Med, 2010, 16(8): 887-896. DOI: 10.1038/nm.2184.
[23] Buck K, Hug S, Seibold P, et al. CD24 polymorphisms in breast cancer: impact on prognosis and risk[J]. Breast Cancer Res Treat, 2013, 137(3): 927-937. DOI: 10.1007/s1054901223259.
[24] Bretz NP, Salnikov AV, Perne C, et al. CD24 controls Src/STAT3 activity in human tumors[J]. Cell Mol Life Sci, 2012, 69(22): 3863-3879. DOI: 10.1007/s0001801210559.
[25] Kang KS, Choi YP, Gao MQ, et al. CD24+ ovary cancer cells exhibit an invasive mesenchymal phenotype[J]. Biochem Biophys Res Commun, 2013, 432(2): 333-338. DOI: 10.1016/j.bbrc.2013.01.102.
[26] Rao B, Gao Y, Huang J, et al. Mutations of p53 and Kras correlate TF expression in human colorectal carcinomas: TF downregulation as a marker of poor prognosis[J]. Int J Colorectal Dis, 2011, 26(5): 593-601. DOI: 10.1007/s00384 01111641.
[27] Yu JL, Xing R, Milsom C, et al. Modulation of the oncogenedependent tissue factor expression by kinase suppressor of ras1[J]. Thromb Res, 2010, 126(1): e6-e10. DOI: 10.1016/j.thromres.2010.04.014. |