Journal of International Oncology ›› 2014, Vol. 41 ›› Issue (12): 902-905.doi: 10.3760/cma.j.issn.1673-422X.2014.12.008
Previous Articles Next Articles
Online:
2014-12-24
Published:
2015-02-02
Contact:
Guo Geng, Email: guogeng973@163.com
DENG Jun, GUO Yu-Hong, GUO Geng. Research advance on vasculogenic mimicry in glioma[J]. Journal of International Oncology, 2014, 41(12): 902-905.
[1] Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system[J]. Acta Neuropathol, 2007, 114(2): 97109. [2] Vredenburgh JJ, Desjardins A, Herndon JE 2nd, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma[J]. Clin Cancer Res, 2007, 13(4): 12531259. [3] Kreisl TN, Kim L, Moore K, et al. Phase Ⅱ trial of singleagent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma[J]. J Clin Oncol, 2009, 27(5): 740745. [4] Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry[J]. Am J Pathol, 1999, 155(3): 739752. [5] Fan YZ, Sun W. Molecular regulation of vasculogenic mimicry in tumors and potential tumortarget therapy[J]. World J Gastrointest Surg, 2010, 2(4): 117127. [6] Paulis YW, Soetekouw PM, Verheul HM, et al. Signalling pathways in vasculogenic mimicry[J]. Biochim Biophys Acta, 2010, 1806(1): 1828. [7] Zhang Y, Sun B, Zhao X, et al. Clinical significances and prognostic value of cancer stemlike cells markers and vasculogenic mimicry in renal cell carcinoma[J]. J Surg Oncol, 2013, 108(6): 414419. [8] Yue WY, Chen ZP. Does vasculogenic mimicry exist in astrocytoma? [J]. J Histochem Cytochem, 2005, 53(8): 9971002. [9] El Hallani S, Boisselier B, Peglion F, et al. A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry[J]. Brain, 2010, 133(Pt 4): 973982. [10] Chen Y, Jing Z, Luo C, et al. Vasculogenic mimicrypotential target for glioblastoma therapy: an in vitro and in vivo study[J]. Med Oncol, 2012, 29(1): 324331. [11] Liu Z, Li Y, Zhao W, et al. Demonstration of vasculogenic mimicry in astrocytomas and effects of Endostar on U251 cells[J]. Pathol Res Pract, 2011, 207(10): 645651. [12] Dong J, Zhao Y, Huang Q, et al. Glioma stem/progenitor cells contribute to neovascularization via transdifferentiation[J]. Stem Cell Rev, 2011, 7(1): 141152. [13] Scully S, Francescone R, Faibish M, et al. Transdifferentiation of glioblastoma stemlike cells into mural cells drives vasculogenic mimicry in glioblastomas[J]. J Neurosci, 2012, 32(37): 1295012960. [14] Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact[J]. J Clin Oncol, 2009, 27(34): 58485856. [15] Hess AR, Seftor EA, Gardner LM, et al. Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2)[J]. Cancer Res, 2001, 61(8): 32503255. [16] Wu N, Zhao X, Liu M, et al. Role of microRNA26b in glioma development and its mediated regulation on EphA2[J]. PLoS One, 2011, 6(1): e16264. [17] Krichevsky AM, Sonntag KC, Isacson O, et al. Specific microRNAs modulate embryonic stem cellderived neurogenesis[J]. Stem Cells, 2006, 24(4): 857864. [18] Dong B, Mu L, Qin X, et al. Stathmin expression in gliomaderived microvascular endothelial cells: a novel therapeutic target[J]. Oncol Rep, 2012, 27(3): 714718. [19] Song Y, Mu L, Han X, et al. MicroRNA9 inhibits vasculogenic mimicry of glioma cell lines by suppressing Stathmin expression[J]. J Neurooncol, 2013, 115(3): 381390. [20] Hendrix MJ, Seftor EA, Meltzer PS, et al. Expression and functional significance of VEcadherin in aggressive human melanoma cells: role in vasculogenic mimicry[J]. Proc Natl Acad Sci U S A, 2001, 98(14): 80188023. [21] Hess AR, Margaryan NV, Seftor EA, et al. Deciphering the signaling events that promote melanoma tumor cell vasculogenic mimicry and their link to embryonic vasculogenesis: role of the Eph receptors[J]. Dev Dyn, 2007, 236(12): 32833296. [22] Seftor RE, Seftor EA, Koshikawa N, et al. Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase2, and membrane type1matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma[J]. Cancer Res, 2001, 61(17): 63226327. [23] Mao XG, Xue XY, Wang L, et al. CDH5 is specifically activated in glioblastoma stemlike cells and contributes to vasculogenic mimicry induced by hypoxia[J]. Neuro Oncol, 2013, 15(7): 865879. [24] Ling G, Wang S, Song Z, et al. Transforming growth factorbeta is required for vasculogenic mimicry formation in glioma cell line U251MG[J]. Cancer Biol Ther, 2011, 12(11): 978988. [25] Serwe A, Rudolph K, Anke T, et al. Inhibition of TGFbeta signaling, vasculogenic mimicry and proinflammatory gene expression by isoxanthohumol[J]. Invest New Drugs, 2012, 30(3): 898915. [26] Francescone R, Scully S, Bentley B, et al. Glioblastomaderived tumor cells induce vasculogenic mimicry through VEGFR2 protein activation[J]. J Biol Chem, 2012, 287(29): 2482124831. [27] Yao X, Ping Y, Liu Y, et al. Vascular endothelial growth factor receptor 2 (VEGFR2) plays a key role in vasculogenic mimicry formation, neovascularization and tumor initiation by Glioma stemlike cells[J]. PLoS One, 2013, 8(3): e57188. [28] Foltz G, Ryu GY, Yoon JG, et al. Genomewide analysis of epigenetic silencing identifies BEX1 and BEX2 as candidate tumor suppressor genes in malignant glioma[J]. Cancer Res, 2006, 66(13): 66656674. [29] Le Mercier M, Fortin S, Mathieu V, et al. Galectin 1 proangiogenic and promigratory effects in the Hs683 oligodendroglioma model are partly mediated through the control of BEX2 expression[J]. Neoplasia, 2009, 11(5): 485496. [30] Liu XM, Zhang QP, Mu YG, et al. Clinical significance of vasculogenic mimicry in human gliomas[J]. J Neurooncol, 2011, 105(2): 173179. [31] Wang SY, Ke YQ, Lu GH, et al. Vasculogenic mimicry is a prognostic factor for postoperative survival in patients with glioblastoma[J]. J Neurooncol, 2013, 112(3): 339345. [32] Qu B, Guo L, Ma J, et al. Antiangiogenesis therapy might have the unintended effect of promoting tumor metastasis by increasing an alternative circulatory system[J]. Med Hypotheses, 2010, 74(2): 360361. [33] Xu Y, Li Q, Li XY, et al. Shortterm antivascular endothelial growth factor treatment elicits vasculogenic mimicry formation of tumors to accelerate metastasis[J]. J Exp Clin Cancer Res, 2012, 31: 16. [34] 郭世文, 张熙, 尉春艳. Alphastatin多肽对胶质瘤血管生成拟态的抑制作用及其相关机制[J]. 重庆医学, 2011, 40(21): 20842086. |
[1] | Liu Pingping, He Xuefang, Zhang Yi, Yang Xu, Zhang Shanshan, Ji Yifei. Risk factors of postoperative recurrence in patients with primary brain glioma and prediction model construction [J]. Journal of International Oncology, 2024, 51(4): 193-197. |
[2] | Xiao Nan, Sun Pengfei. Research progress of oxidative stress in the sensitivity of chemoradiotherapy for gliomas [J]. Journal of International Oncology, 2022, 49(6): 357-361. |
[3] | Zhu Yishuo, Cui Yujie, Liu Qi, Li Jun, Fan Yuechao. Analysis of risk factors and prediction model establishment for early postoperative recurrence in glioma patients [J]. Journal of International Oncology, 2022, 49(2): 79-83. |
[4] | Kong Chunyu, Sun Pengfei. SLC7A11 and glioma [J]. Journal of International Oncology, 2022, 49(10): 604-607. |
[5] | Guo Shihao, Ren Yeqing, Guo Geng. Molecular mechanism of vasculogenic mimicry in brain glioma [J]. Journal of International Oncology, 2021, 48(6): 362-365. |
[6] | Wang Xianwei, Shi Meiyan, Wang Fengqin, Qi Fu, Wang Chaozhe, Zhou Fei. Roles of TSA upregulation miR-4298 targeting inhibition of PADI4 expression in inducing U251 cells apoptosis [J]. Journal of International Oncology, 2021, 48(4): 193-199. |
[7] | Sun Yanqi, Ren Yeqing, Guo Geng. Mechanism of inhibitory effect of interferon and its related signal pathway on the invasion of glioma [J]. Journal of International Oncology, 2021, 48(3): 172-175. |
[8] | Zhao Congxuan, Yu Tao. Mining and prediction of glioma-related genes [J]. Journal of International Oncology, 2020, 47(5): 293-296. |
[9] | Nan Yang, Zhong Yue. New research advances of long non-coding RNA in glioma [J]. Journal of International Oncology, 2020, 47(2): 98-102. |
[10] | Zhang Wen, Song Qibin, Hu Weiguo. Clinical application of multimodal magnetic resonance imaging in glioma [J]. Journal of International Oncology, 2020, 47(11): 686-690. |
[11] | Chen Liang, Qin Jun, Lei Junrong, Liu Jun, Wang Lu. miR-1254 inhibits the proliferation and invasion of glioma cells by targeting CSF-1 [J]. Journal of International Oncology, 2020, 47(10): 577-584. |
[12] | Zhang Qianhui, Zhang Yang, Su Weipeng, Zhang Song′an, Liu Pan, Zhao Huarong. Expressions of LSD1, MGMT and Ki-67 in high-grade glioma and their influences on prognosis [J]. Journal of International Oncology, 2019, 46(9): 519-525. |
[13] | Yi Lin, Qiu Shi. Anti-tumor effect and mechanisms of shikonin on gliomas [J]. Journal of International Oncology, 2019, 46(8): 489-491. |
[14] | Yu Xuejuan, An Hongwei, Sun Yamei, Jiang Zheng, Zhang Xuehai, Yang Wenjing, Zhang Wei. Expressions of MMP2, TIMP2, Ki-67 and P53 in glioma tissues and their significance [J]. Journal of International Oncology, 2019, 46(12): 718-722. |
[15] | Lu Di, Zhang Jundong, Guo Geng, Wang Xiaogang. Research progress of interferon induced glioma cell apoptosis [J]. Journal of International Oncology, 2018, 45(7): 432-435. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||