Journal of International Oncology ›› 2014, Vol. 41 ›› Issue (3): 172-177.doi: 10.3760/cma.j.issn.1673-422X.2014.03.004
Previous Articles Next Articles
ZHU Lei, SUI Hua, DENG Wan-Li
Online:
2014-03-08
Published:
2014-03-17
Contact:
Deng Wanli, E-mail: dwl0707@126.com
E-mail:dwl0707@126.com
ZHU Lei, SUI Hua, DENG Wan-Li. Advances in signal transduction pathway regulating EMT in tumor invasion and metastasis[J]. Journal of International Oncology, 2014, 41(3): 172-177.
[1] Theiry JP, Acloque H, Huang RY, et al. Epithelialmesenchymal transitions in development and disease[J]. Cell, 2009, 139(5):871-890. [2] Liu Y. New insights into epithelialmesenchymal transition in kidney fibrosis[J]. J Am Soc Nephrol, 2010, 21(2):212-222. [3] LópezNovoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression[J]. EMBO Mol Med, 2009, 1(6-7):303-314. [4] Sun T, Zhao N, Zhao XL, et al. Expression and functional significance of twist1 in hepatocellular carcinoma:its role in vasculogenic mimicry[J]. Hepatology, 2010, 51(2):545-556. [5] Sabe H. Cancer early dissemination:cancerous epithelial mesenchymal transdifferentiation and transforming growth factor β signaling[J]. J Biochem, 2011, 149(6):633-639. [6] Voulgari A, Pintzas A. Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic[J]. Biochim Biophys Acta, 2009, 1796(2):75-90. [7] Meng X, Ezzati P, Wilkins JA. Requirement of podocalyxin in TGF-beta induced epithelial mesenchymal transition[J]. PLoS One, 2011, 6(4):e18715. [8] Qiao B, Johnson NW, Gao J. Epithelial-mesenchymal transition in oral squamous cell carcinoma triggered by transforming growth factor-beta1 is Snail family-dependent and correlates with matrix metalloproteinase-2 and -9 expressions[J]. Int J Oncol, 2010, 37(3):663-668. [9] Li QQ, Xu JD, Wang WJ, et al. Twist1-mediated Adriamycin-induced epithelialmesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells[J]. Clin Cancer Res, 2009, 15(8):2657-2665. [10] Rosanò L, Cianfrocca R, Spinella F, et al. Acquisition of chemoresistance and EMT phenotype is linked with activation of the endothelin A receptor pathway in ovarian carcinoma cells[J]. Clin Cancer Res, 2011, 17(8):2350-2360. [11] Davalos V, Moutinho C, Villanueva A, et al. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis[J]. Oncogene, 2012, 31(16):2062-2074. [12] Natalwala A, Spychal R, Tselepis C. Epithelial-mesenchyrreal transition mediated tumourigenesis in the gastrointestinal tract[J]. World J Gastroenterol, 2008, 14(24):3792-3797. [13] Ungefroren H, Groth S, Sebens S, et al. Differential roles of Smad2 and Smad3 in the regulation of TGF-β1-mediated growth inhibition and cell migration in pancreatic ductal adenocarcinoma cells: control by Rac1[J]. Mol Cancer, 2011, 10:67. [14] Veerasamy M, Phanish M, Dockrell ME. Smad mediated regulation of inhibitor of DNA binding 2 and its role in phenotypic maintenance of human renal proximal tubule epithelial cells[J]. PLoS One, 2013, 8(1):e51842. [15] Chitalia V, Shivanna S, Martorell J, et al. cCbl, a ubiquitin E3 ligase that targets active β-catenin: a novel layer of Wnt signaling regulation[J]. J Biol Chem, 2013, 288(32):23505-23517. [16] Zhao JH, Luo Y, Jiang YG, et al. Knockdown of β-Catenin through shRNA cause a reversal of EMT and metastaic phenotypes induced by HIF-1α[J]. Cancer Invest, 2011, 29(6):377-382. [17] Mao Y, Xu J, Li Z, et al. The Role of Nuclear β-Catenin Accumulation in the Twist2Induced Ovarian Cancer EMT[J]. PLoS One, 2013, 8(11):e78200. [18] Kamino M, Kishida M, Kibe T, et al. Wnt-5a signaling is correlated with infiltrative activity in human glioma by inducing cellular migration and MMP-2[J]. Cancer Sci, 2011, 102(3):540548. [19] Kessenbrock K, Dijkgraaf GJ, Lawson DA, et al. A role for matrix metalloproteinases in regulating mammary stem cell function via the Wnt signaling pathway[J]. Cell Stem Cell, 2013, 13(3):300-313. [20] Dey N, Young B, Abramovitz M, et al. Differential activation of Wnt-β-catenin pathway in triple negative breast cancer increases MMP7 in a PTEN dependent manner[J]. PLoS One, 2013, 8(10):e77425. [21] Prasad CP, Chaurasiya SK, Axelsson L, et al. WNT-5A triggers Cdc42 activation leading to an ERK1/2 dependent decrease in MMP9 activity and invasive migration of breast cancer cells[J]. Mol Oncol, 2013, 7(5):870-883. [22] Li Y, Ma J, Qian X, et al. Regulation of EMT by Notch Signaling Pathway in Tumor Progression[J]. Curr Cancer Drug Targets, 2013, 13(9):957-962. [23] Wang T, Xuan X, Pian L, et al. Notch-1-mediated esophageal carcinoma EC-9706 cell invasion and metastasis by inducing epithelial-mesenchymal transition through Snail[J]. Tumour Biol, 2013, In press. [24] Bao B, Wang Z, Ali S, et al. Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells[J]. Cancer Lett, 2011, 307(1):26-36. [25] Makinodan E, Marneros AG. Protein kinase A activation inhibits oncogenic Sonic hedgehog signalling and suppresses basal cell carcinoma of the skin[J]. Exp Dermatol, 2012, 21(11):847-852. [26] Rudin CM, Hann CL, Laterra J, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449[J]. N Engl J Med, 2009, 361(12):1173-1178. [27] Choe C, Shin YS, Kim SH, et al. Tumor-stromal interactions with direct cell contacts enhance motility of non-small cell lung cancer cells through the hedgehog signaling pathway[J]. Anticancer Res, 2013, 33(9):3715-3723. [28] Isohata N, Aoyagi K, Mabuchi T, et al. Hedgehog and epithelial-mesenchymal transition signaling in normal and malignant epithelial cells of the esophagus[J]. Int J Cancer, 2009, 125(5):1212-1221. [29] Chen JH, Wu H, Ma JP, et al. Effects of inhibition of Hedgehog signaling pathway for transforming growth factor-β-induced epithelial-mesenchymal transition[J]. Zhonghua Yi Xue Za Zhi, 2013, 93(26):2075-2078. [30] Lei J, Ma J, Ma Q, et al. Hedgehog signaling regulates hypoxia induced epithelial to mesenchymal transition and invasion in pancreatic cancer cells via a ligandindependent manner[J]. Mol Cancer, 2013, 12:66. [31] Ten Haaf A, Bektas N, Von Serenyi S, et al. Expression of the gliomaassociated oncogene homolog(GLI) 1 in human breast cancer is associated with unfavourable overall survival[J]. BMC Cancer, 2009, 9:2-12. [32] Liao X, Siu MK, Au CW, et al. Aberrant activation of hedgehog signaling pathway in ovarian cancers:effect on prognosis,cell invasion and differentiation[J]. Carcinogenesis, 2009, 30(1):131-140. [33] Keysar SB, Le PN, Anderson RT, et al. Hedgehog signaling alters reliance on EGF receptor signaling and mediates anti-EGFR therapeutic resistance in head and neck cancer[J]. Cancer Res, 2013, 73(11):3381-3392. [34] Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer[J]. Science, 2009, 324(5933):1457-1461. [35] Inaguma S, Kasai K, Ikeda H. GLI1 facilitates the migration and invasion of pancreatic cancer cells through MUC5AC-mediated attenuation of E-cadherin[J]. Oncogene, 2011, 30(6):714-723. [36] Hong KO, Kim JH, Hong JS, et al. Inhibition of Akt activity induces the mesenchymaltoepithelial reverting transition with restoring E-cadherin expression in KB and KOSCC25B oral squamous cell carcinoma cells[J]. J Exp Clin Cancer Res, 2009, 28:28. [37] Yoo YA, Kang MH, Lee HJ, et al. Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP9 pathway in gastric cancer[J]. Cancer Res, 2011, 71(22):7061-7070. [38] Lin CY, Tsai PH, Kandaswami CC, et al. Role of tissue transglutaminase 2 in the acquisition of a mesenchymal-like phenotype in highly invasive A431 tumor cells[J]. Mol Cancer, 2011, 10:87. [39] Srivastava R K, Kurzrock R, Shankar S. MS-275 sensitizes TRAILresistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo[J]. Mol Cancer Ther, 2010, 9(12):3254-3266. [40] Yeasmin S, Nakayama K, Rahman MT, et al. Loss of MKK4 expression in ovarian cancer:a potential role for the epithelial to mesenchymal transition[J]. Int J Cancer, 2011, 128(1):94104. [41] Shao M, Cao L, Shen C, et al. Epithelial-to-mesenchymal transition and ovarian tumor progression induced by tissue transglutaminase[J]. Cancer Res, 2009, 69(24):9192-9201. [42] Chua HL, BhatNakshatri P, Clare SE, et al. NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells:potential involvement of ZEB-1and ZEB-2[J]. Oncogene, 2007, 26(5):711-724. [43] Guo G, Yao W, Zhang Q, et al. Oleanolic acid suppresses migration and invasion of malignant glioma cells by inactivating MAPK/ERK signaling pathway[J]. PLoS One, 2013, 8(8):e72079. [44] 唐勇, 王辉, 陈伟娟, 等. EMT经p38-MAPK调节乳腺癌MCF-7细胞P-gp介导的多药耐药[J]. 中国肿瘤生物治疗杂志, 2010, 17(2):144-148. [45] Zhou X, Zhang Y, Han N, et al. α-Enolase (ENO1) inhibits epithelial-mesenchymal transition in the A549 cell line by suppressing ERK1/2 phosphorylation[J]. Zhongguo Fei Ai Za Zhi, 2013, 16(5):221-226. |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Li Shuyue, Ma Chenying, Zhou Juying, Xu Xiaoting, Qin Songbing. Progress of radiotherapy in oligometastatic non-small cell lung cancer [J]. Journal of International Oncology, 2024, 51(3): 170-174. |
[3] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan. Research progress on the histopathological growth patterns of colorectal liver metastasis [J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[4] | Zhang Lu, Jiang Hua, Lin Zhou, Ma Chenying, Xu Xiaoting, Wang Lili, Zhou Juying. Analysis of curative effect and prognosis of immune checkpoint inhibitor in the treatment of recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2023, 50(8): 475-483. |
[5] | Yang Lirong, Wang Yufeng. Construction of machine learning models for predicting the risk of postoperative distant metastasis recurrence in serous ovarian cancer [J]. Journal of International Oncology, 2023, 50(4): 220-226. |
[6] | Ma Peihan, Zhang Lingming, Lu Ning, Zhang Mingxin. Effect of anesthesia on the recurrence and metastasis of hepatocellular carcinoma [J]. Journal of International Oncology, 2023, 50(2): 117-121. |
[7] | Zhao Jianhao, Duan Yanchao. Research progress in the pathogenesis of extramedullary disease in multiple myeloma [J]. Journal of International Oncology, 2023, 50(1): 55-59. |
[8] | Zhang Lu, Zhou Juying, Ma Chenying, Lin Zhou. Advances in immunotherapy for recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2022, 49(9): 517-520. |
[9] | Peng Chen, Xie Yintong, Zhang Xin, Xie Peng. Research progress of maintenance therapy for cervical cancer [J]. Journal of International Oncology, 2022, 49(7): 430-435. |
[10] | Wang Bin, Zhou Jiangyun, Liu Xi. Analysis of the clinical value of different radiotherapy schemes in patients with advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2021, 48(8): 484-488. |
[11] | Jiang Mengting, Wang Jiachun, Zong Jing. Effects of NFAT5 inhibition on proliferation, invasion, migration and apoptosis of lung adenocarcinoma cells [J]. Journal of International Oncology, 2021, 48(6): 321-327. |
[12] | Wang Ziyi, Chen Hongjie, Yang Ninggang, Zhang Jun, Zhang Xiangjun, Yu Xinning, Ma Zhongyi, Dai Enlai. Effects of decorin on proliferation, migration and invasion of bladder cancer cells [J]. Journal of International Oncology, 2021, 48(6): 335-340. |
[13] | Ma Xiuzhen, Lu Yan, Zhao Bingbing, Qiu Hongcong, Xu Xun, Wei Min. Effects of total flavonoids from Baeckea frutescens on the migration, invasion and apoptosis of cervical cancer SiHa cells [J]. Journal of International Oncology, 2021, 48(4): 206-211. |
[14] | Li Bingliang, Yang Ya, Huang Yingli, Si Wen, Li Xingwei, Zhang Yuanmin, Bian Jichao, Chen Yu. Effects of miR-20a-5p targeting KDM6B on the proliferation, migration and invasion of osteosarcoma cells [J]. Journal of International Oncology, 2021, 48(2): 65-73. |
[15] | Chi Xiuying, Wang Hongbiao, Li Zhifeng, Lin Yingcheng. Progression in the therapies of relapse or metastatic esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2021, 48(12): 755-759. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||